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Abstract Sub-sentential alignment is the process by which multi-word translation units are
extracted from sentence-aligned multilingual parallel texts. This process is required, for in-
stance, in the course of training statistical machine translation systems. Standard approaches
typically rely on the estimation of several probabilistic models of increasing complexity and
on the use of various heuristics, that make it possible to align, first isolated words, then, by
extension, groups of words. In this paper, we explore an alternative approach, originally pro-
posed by Lardilleux and Lepage (Proceedings of AMTA 2008, pp 125–132), which relies
on a much simpler principle: the comparison of occurrence profiles in sub-corpora obtained
by sampling. After analyzing the strengths and weaknesses of this approach, we show how
to improve the detection of multi-word translation units and evaluate these improvements
on machine translation tasks.

Keywords association measures · sub-sentential alignment · phrase-based machine
translation

1 Introduction

Sub-sentential alignment consists in extracting multi-word translation units from sentence-
aligned multilingual parallel texts, i.e. texts whose sentences have been related to their trans-
lations. This task constitutes the first step in the process of training data-driven machine
translation systems, be they statistical or example-based. The most prominent approach
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nowadays is phrase-based statistical machine translation, where the core model is a transla-
tion table derived from sub-sentential mappings. This table consists in a pre-computed list
of translation pairs, where each (source, target) phrase1pair is associated with a number of
numerical values loosely reflecting the likelihood that source translates to target.

The problem of learning sub-sentential mappings (e.g. word-to-word or phrase-to-phrase
associations) from sentence-aligned text corpora is far from new, and a great number of
proposals have been put forward to perform this task. From a bird’s eye view, methods for
learning associations fall into two main categories: on the one hand, the alignment-based tra-
dition, introduced by Brown et al (1988), addresses the problem of identifying alignments
between words or groups of words in parallel sentences. This approach consists in build-
ing a statistical model of the parallel text, the parameters of which are estimated through a
global maximization process which simultaneously considers all the possible associations
that could exist in the parallel corpus. In practice, the goal is to determine the best set of
correspondences (or alignment links) between source and target words in each parallel sen-
tence pair. The most famous representatives in this category are the IBM alignment models
(Brown et al 1993b) for aligning isolated words, which have given rise to an impressive se-
ries of variants and amendments (see e.g. work by Vogel et al (1996); Wu (1997); Deng and
Byrne (2005); Liang et al (2006); Fraser and Marcu (2007); Ganchev et al (2008), to cite
a few). Generalizing models of word alignments to models for phrase alignments proves
to be a much harder problem, and in the view of the deficiencies or inefficiencies of the
proposals of Marcu and Wong (2002) and of Vogel (2005), such alignments are derived
by heuristically combining asymmetric word to phrase alignments obtained separately in
both directions (Koehn et al 2003). Based on these alignment links, it is finally possible to
evaluate the quality of each extracted pair of phrases.

On the other hand, associative approaches, introduced by (Gale and Church 1991), do
not require the use of an alignment model. In order to detect translational equivalence, they
use standard statistical measures of independence such as, for instance, the Dice coefficient,
the pointwise mutual information (Cover and Thomas 1991), the mutual information (Gale
and Church 1991; Fung and Church 1994), or the likelihood ratio (Dunning 1993)—see
also more recent work by Melamed (2000) and Moore (2005). As the number of potential
word associations grows more than linearly with the corpus size, testing all possible word
associations is computationally costly, and as far as we know, nobody ever tried to evaluate
all the possible phrase to phrase associations. Instead, the list of associations to be evaluated
is computed using predefined patterns and filters (e.g. restricting the computation to the
most frequent word n-grams). In this approach, the process is a local maximization process,
where each segment is processed independently from the others. This approach generally
allows the direct extraction of scored translation pairs. Work in this family includes (Gale
and Church 1991), which has been since extended to non strictly parallel corpora (Fung and
Church 1994; Fung and Yee 1998), to learn multi-word and term associations (Dagan and
Church 1994; Gaussier and Langé 1995; Smadja et al 1996), and to alternative association
measures, such as the G2 (Gale and Church 1991) and the φ 2 (Dunning 1993; Moore 2004,
2005) statistics.

The alignment-based approach is the most widely used, mainly due to its tight integra-
tion within the statistical machine translation (SMT) framework, of which it constitutes a
cornerstone since the introduction of the IBM models (Brown et al 1993b). Note that both

1 As is now standard in machine translation circles, we use here the word “phrase” to denote a contiguous
sequence of words of arbitrary length; we are aware that this departs from the more linguistic acceptation of
the term.
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approaches show complementary strengths and weaknesses, as acknowledged e.g. by the
work of Johnson et al (2007), where phrase associations extracted as a result of a word
alignment are then filtered out using statistical association measures.

We have recently proposed an associative sub-sentential alignment method (Lardilleux
and Lepage 2008, 2009; Lardilleux 2010), which addresses a number of issues that are often
overlooked. In particular, this method allows the processing of multiple languages simulta-
neously, and does not make any distinction between source and target; it is also amenable to
massive parallelism, scales easily, and is very simple to implement. On average, this method
has been shown to produce better results than state-of-the-art tools on bilingual lexicon in-
duction tasks in terms of recall, but seems to be less efficient on phrase-based machine
translation tasks (Lardilleux et al 2009) in terms of BLEU scores (Papineni et al 2002). So
far, we have only proposed hypotheses to explain these apparently contradictory results. In
this paper, we propose a more detailed analysis of our algorithm, in order to determine the
origin of these differences. Based on this analysis, we introduce a generalization, resulting
in significant improvements of the performance in machine translation tasks.

This paper is organized as follows: Section 2 is devoted to an overview of the original
alignment method; Section 3 describes experiments to evidence the origin of its weaknesses
and its possible complementarity with IBM models; in Section 4, we propose a generaliza-
tion and evaluate its performance on several tasks; Section 5 then shows to what extent the
method can be used to complement other word alignment tools; Conclusions and further
prospects are discussed in Section 6.

2 Anymalign: an Overview

2.1 Main Principles

Our alignment method can be viewed as an emulation of associative methods, generalized
beyond the extraction of mere pairs (source, target) of isolated words.2 Indeed, it considers
possibly discontinuous sequences of words of various sizes for extraction, which makes it
useful for handling tricky phenomena such as separable phrasal verbs in English (see ex-
ample below, which occurs in the Europarl corpus (Koehn 2005)). The main difference with
traditional alignment methods is that it focuses exclusively on words that strictly occur in the
same sentences of the input parallel corpus, irrespective of the language. Let us assume for
instance, that in a French–English sentence-aligned parallel corpus, each occurrence of the
French word noté is paralleled with an occurrence of the English words written and down.
Assume furthermore that no other word (or word group) has the same occurrence profile
as noté (in French) and written and down (in English), then the method will conclude that
written . . . down and noté are mutual translations. Of course, this simple-minded principle
cannot be expected to detect many associations because the number of words that have ex-
actly the same distribution over entire parallel corpora is very limited. Instead of considering
the complete input corpus as a whole, our method processes a large number of small sub-
corpora, the key idea being that the smaller the corpus, the more likely it is to contain words
that share the same distribution, which will then be identified by our method.

The core of the algorithm thus consists in extracting associations from multiple inde-
pendent sub-corpora built by sampling. In practice, we use a distribution on the sub-corpus

2 In this paper, the term “word” refers to a string of non-blank characters delimited by blank characters, as
produced by any suitable tokenization program.
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Table 1 Stages of the alignment algorithm. The numbers within brackets correspond to the
numbered steps in Figure 1

(2) Concatenate parallel sentences from the input corpus, output one line for each input tuple of lines
Initialize an associative array of AlignmentCounts
Do

(2) Select a sub-corpus C by sampling
(3) Index words by their vector of presence in the sentences of C
(3) Words with identical distribution are clustered into a same group
For each group of words:

For each sentence where group appears :
(4) Restore word order in group
(4) AlignmentCounts[group] ++
(4) AlignmentCounts[sentence – group] ++

Until allotted time used up or no more alignment obtained or any other criterion (or interruption by user)
(5) Compute alignment scores

size which concentrates most of its mass on very small sub-corpora. Indeed, small corpora
are faster to process, ensure a quicker convergence toward accurate association scores, and
have been shown to produce better results (Lardilleux 2010). For each sequence of words
that share the same distribution in a sub-corpus, we extract two alignments: the sequence
itself, and its complementary part in the sentence it appears in. The number of sub-corpora
to be processed does not need to be defined in advance: the process stops according to some
criteria such as the amount of elapsed time or the attained input corpus coverage; it can also
be externally halted at any time by the user, and yet deliver a usable set of associations. Be-
cause the sub-corpus selection is random, the entire coverage of the initial training corpus
is only guaranteed in the limit; however, the more sub-corpora are processed, the larger is
the coverage of the input corpus, and the more accurate are the association measures. At the
end of a run, all the alignments that have been extracted are evaluated by various numer-
ical scores (translation probabilities and lexical weights (Koehn et al 2003)), according to
the number of times they were produced (refer to Lardilleux and Lepage (2009) for details
on how these computations are performed). The result is a translation table that can be di-
rectly plugged, for instance, in machine translation systems, after appropriate filtering, e.g.
discarding discontinuous sequences for phrase-based systems.

2.2 Algorithmic details

Figure 1 illustrates the main stages of the method on an example trilingual text. The complete
extraction algorithm is summarized in Table 1. In this description, the notation x− y, where
x is a sentence and y a possibly discontinuous sub-part of x, denotes the complementary
sub-part of y in x.

In the rest of this paper, where we primarily focus on machine translation applications,
we will restrain ourselves to consider bilingual corpora, even though the ability to simulta-
neously extract association in more than two languages is certainly one appealing aspect of
the method.
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(1) Input: a multilingual parallel corpus, here Arabic–French–English.

1 . �lS� �� , ­wh� ↔ Un café , s’il vous plaı̂t .↔ One coffee , please .
2 . ­EAtm� ­wh� £@¡ ↔ Ce café est excellent . ↔ This coffee is excellent .
3 . �yq� ©AJ ↔ Un thé fort . ↔ One strong tea .
4 . Tlyq� ­wh� ↔ Un café fort . ↔ One strong coffee .

⇓

(2) Parallel sentences are concatenated,
distinguishing words according to their original language

(here, using subscripts: 1 for Arabic, 2 for French, and 3 for English).
Selection of a random sub-corpus (here, the first three lines of the original corpus).

1 .1 �lS�1 ��1 ,1 ­wh�1 Un2 café2 ,2 s’il2 vous2 plaı̂t2 .2 One3 coffee3 ,3 please3 .3
2 .1 ­EAtm�1 ­wh�1 £@¡1 Ce2 café2 est2 excellent2 .2 This3 coffee3 is3 excellent3 .3
3 .1 �yq�1 ©AJ1 Un2 thé2 fort2 .2 One3 strong3 tea3 .3

⇓

(3) Indexation of words (compute distribution profile).
Words with identical distributions are clustered together.

.1 .2 .3 ­wh�1 café2 coffee3 One3 Un2 ,1 �lS�1 ��1 ,3 ,2 plaı̂t2 please3 s’il2 vous2 £@¡1 ­EAtm�1 . . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 . . .
2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 . . .
3 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 . . .

⇓

(4) Each group of words allows to extract two alignments
for each sentence where it appears.

The words: appear in
sentences:

from where we extract:

­wh�1 café2 coffee3

1 ­wh�1 café2 coffee3
.1 �lS�1 ��1 ,1 Un2 ,2 s’il2 vous2 plaı̂t2 .2 One3 ,3 please3 .3

2 ­wh�1 café2 coffee3
.1 ­EAtm�1 £@¡1 Ce2 est2 excellent2 .2 This3 is3 excellent3 .3

...

⇓

(5) Count alignments and restore boundaries between languages.

Arabic French English Count

­wh� ↔ café ↔ coffee 2
. �lS� �� , ↔ Un ,s’il vous plaı̂t . ↔ One ,please . 1
. ­EAtm� £@¡ ↔ Ce est excellent . ↔ This is excellent . 1

...

Fig. 1 An illustration of the alignment method. In the following, we will generalize Step (3)
(indexation and clustering of words)
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2.3 Results

In this section, we summarize the main results and conclusions of (Lardilleux 2010). This
alignment method has been evaluated on two kinds of tasks: phrase-based statistical machine
translation and bilingual lexicon induction. Our implementation, Anymalign,3 is compared
with a phrase extraction standard pipeline using MGIZA++4 (Gao and Vogel 2008), which
is the most recent implementation of IBM models for word alignments, and tools from the
Moses toolkit (Koehn et al 2007) for the extraction and scoring processes. In practice, be-
cause Anymalign may be stopped at any time, we start by executing MGIZA++ (in two di-
rections) with its default parameters, measure its execution time, and run Anymalign for the
same amount of time. The parallel corpora used in these experiments are Europarl (Koehn
2005) and excerpts of the BTEC (Takezawa et al 2002), distributed during the IWSLT ma-
chine translation evaluation campaigns (Fordyce 2007). The BTEC excerpts are made of
20,000 to 40,000 pairs of short aligned sentences (10 English words on average) and our
Europarl corpus is made of 100,000 pairs of long sentences (30 English words on average).

As for the phrase-based statistical machine translation task, we compare the performance
of Moses (Koehn et al 2007) with its default translation table, built from MGIZA++’s align-
ments, with the same system using a phrase table built with Anymalign. All phrase tables
contain five common features: translation probabilities in two directions, lexical weights in
two directions, and length penalty. For these experiments, we do not make use of lexical re-
ordering and only use the default distance-based reordering model. On average, Anymalign
has been found to be about two BLEU points worse than the baseline. In the best case, we
observed a gain of one point in comparison with MGIZA++ (BTEC, Japanese–English); in
the worst case, a loss of eight points (Europarl, Finnish–English). Overall, the differences
are more pronounced with Europarl than with the BTEC.

As for the bilingual lexicon induction task, we compare the translation tables produced
by the two aligners with a reference bilingual lexicon.5 This lexicon is first filtered so as to
discard pairs that do not appear in any parallel sentence, i.e. which cannot be extracted from
the parallel corpus by the aligners. The vast majority of the resulting dictionary entries are
simple words (considering all dictionaries, the average number of words per entry is 1.2),
but a few long n-grams (up to n = 7) are included as well. Words in the reference can be
ambiguous, i.e. a given entry may have several translations. We then define a translation
table’s score S, relative to this filtered reference lexicon R, as the sum of the source to target
translation probabilities of those translation pairs in the translation table that are attested in
the reference, divided by the number of distinct source entries in the reference:

S =
1
|RS| ∑

( f ,e)∈R
p(e| f )

where RS is the set of distinct source entries in the reference bilingual lexicon R and p(e| f )
the probability that source word f translates to target word e, as reported in the translation
table. If the pair (e, f ) is not present in the translation table, we set p(e| f ) = 0.

Because it compares the correct outputs of the systems (more precisely, all outputs
weighted by their translation probabilities) against a subset of all correct translation pairs

3 http://www.limsi.fr/Individu/alardill/anymalign/
As of version 2.5, Anymalign implements the generalization described in Sec. 4.

4 http://geek.kyloo.net/software/doku.php/mgiza:overview
In all subsequent experiments, we use MGIZA++ with its default parameters, which typically yield good
results. We run 5 iterations of IBM model 1, 5 iterations of the HMM, and 5 iterations of models 3 and 4.

5 Our lexicons come mainly from the XDXF website: http://xdxf.sourceforge.net
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Fig. 2 Coverage of the source part of a sample of the French–English Europarl corpus
by MGIZA++ and Anymalign’s translation tables. Anymalign finds more associations for
unigrams than the baseline, but much less for longer n-grams

extractable from the parallel corpus, the result is to be interpreted as a recall, in the range
[0,1], and is thus an indicator of lexical coverage. In our experiments, we found that, on
average, Anymalign is better by 7% relatively to MGIZA++. In the best case, we obtained
a relative gain of 70% (Europarl, Finnish–French); in the worst, a loss of 18% (Europarl,
Swedish–Finnish). The genre of texts that constitute the corpus does not seem to have a
major influence on these scores.

In summary, our method is less efficient on phrase-based machine translation tasks,
but produces better word mappings, as demonstrated by the results of a comparison with
reference lexicons. As showed in previous work (Lardilleux et al 2009), this is mainly due
to the limited capacity of our method to produce word n-gram alignments with n ≥ 2, as
illustrated in Figure 2. The goal of next section is to analyse the origin of these discrepancies.

3 A reanalysis of Anymalign

In this section, we present experiments showing that the above-mentioned, and somewhat
paradoxical, results have two main causes: (1) our algorithm fails to extract groups contain-
ing both rare and frequent words, and (2) our algorithm behaves poorly on frequent words,
which are the most likely to be useful in machine translation tasks. The experiments related
in this section are performed on an excerpt of about 350,000 sentences from Europarl, using
the Portuguese–Spanish language pair (extreme case of related languages in our experi-
ments) and the Finnish–English language pair (extreme case of distant languages). Table 2
presents the number of words in each part of these corpora.

3.1 Rare and frequent words

As previously noted (Lardilleux et al 2009), the constraint that two words should have an
identical distribution to be extracted prevents the method from extracting sequences made of
words with different frequencies. For instance, a bigram composed of one frequent word and
one hapax (made of, for instance, of a (frequent) determiner and a (rare) noun) can hardly
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Table 2 Characteristics of corpora used for our analysis

Language Number of words (tokens) Vocabulary size

Portuguese 9,249,177 87,341
Spanish 9,330,199 85,366

Finnish 6,472,649 274,958
English 8,955,995 53,704

be extracted because, assuming the frequent word appears in most input corpus sentences,
it would require sampling a very small sub-corpus to turn this word into a hapax, which
is needed to extract both words as a sequence. However, in such a sub-corpus, most other
words would also be hapaxes, and the extracted sequence would not only consist of the two
words of interest, but it would also contain all the other hapaxes in the same sentence.

We further analyze this fact by studying the relationship between the frequency of a
word and the size of sub-corpora from which it can be extracted. Given a source word ws,
three situations are possible:

1. in a sub-corpus that is “too small,” other source words have the same distribution as ws.
Thus, ws cannot be extracted separately.

2. in a sub-corpus whose size is “ideal,” no other source word has the same distribution
as ws, and at least one target word has the same distribution. ws can thus be extracted
separately.

3. in a sub-corpus that is “too large,” no other source or target word has the same distribu-
tion as ws. In this case, ws cannot be extracted at all.

There thus exists a range of sub-corpus sizes which enables a word to be extracted as a
single unit. Of course, this range depends on the word to be extracted, and particularly on its
frequency. We have empirically determined such ranges by measuring, for each source word
in a parallel corpus, the average sub-corpus size needed to align it separately, as well as the
average size from which it cannot be aligned at all anymore. To this end, for each word ws
we start by randomly drawing a sub-corpus consisting of one single sentence containing ws,
and test whether ws can be aligned in it, i.e whether its frequency in the sentence differs
from that of all the other words. In most cases, all source and target words will occur exactly
once and thus share the same distribution, with the exception of some frequent function
words that are likely to appear several times. For most words, the starting situation is thus
case 1 in the enumeration above. The process is then iterated, by adding at each step one new
randomly chosen sentence to the sub-corpus, and testing whether ws can be extracted from
this enlarged corpus. The process stops when no target word shares the same distribution as
the source word under focus.

Each experiment produces two numbers: the minimum size from which the word can
be aligned in isolation (transition from case 1 to case 2 above), and the minimum size from
which the word cannot be aligned at all (transition from case 2 to case 3). This test is repeated
1,000 times for each source word, and we take the average of measures collected on all
1,000 drawings, so that each word is characterized by two average sub-corpus sizes. The
results are plotted on Figure 3.

These graphs suggest two types of conclusions. First, the range of “ideal” sub-corpus
sizes, i.e. the middle zone’s width, greatly varies from one language pair to another. Note
that the logarithmic scale makes this range seem more narrow than it actually is: the aver-
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Fig. 3 Average sub-corpus sizes from which a source word can be extracted according to its
frequency. In the lower zone, the word cannot be extracted separately (case 1). In the middle
zone, the word can be extracted separately (case 2). In the upper zone, the word cannot be
extracted at all (case 3). The slight shift of the upper limit on the right extremities of the two
graphs is due to the full stop (assimilated to a word in our experiences), which is easier to
extract than the other frequent words: it can be extracted separately in sub-corpora made up
of about 5 to 80 sentences

age ratio between its upper and lower limits, leaving aside the logarithmic scale, is 2.2 for
the Portuguese–Spanish pair, and 1.2 for the Finnish–English pair. This difference is easily
explained by the differences of language morphology within each language pair. Thus, we
might expect that extracting a given word by Anymalign will require the processing of more
sub-corpora for the Finnish–English pair than for the Portuguese–Spanish pair, since it is
less likely to randomly draw a sub-corpus having the “right size.”

The second remark is of the utmost interest within the scope of this paper: the more
frequent a word, the smaller the sub-corpora from which it is extracted, and conversely.
Rare words (left part of the graphs) are therefore aligned from large sub-corpora, while
frequent words (right part of the graphs) are aligned from small sub-corpora. This is, for
instance, the case of the the comma, which can be aligned in sub-corpora made up of 5 to
9 sentences. A consequence is that a bigram made up of a frequent word (say, a determiner)
followed by a rarer word (say, a noun) can not be extracted, as it would require sub-corpora
that are both small and large. This partly explains why Anymalign is unable to align long
n-grams, as illustrated by Figure 2. We will propose an alternative in the next section.

3.2 Useful words

The second explanation for the discrepancies of Anymalign’s results observed on the two
tasks discussed above can be easily explained by the fact that these tasks have a different
notion of what a useful association actually is.

Our method and IBM models rely on opposite intuitions: the former takes advantage of
word rarity in order to align them (the number of occurrences of every word is artificially
and temporarily decreased by considering sub-corpora), while the latter are estimated as
a result of a global optimization process, based on observations measured on the whole
corpus. A consequence is that Anymalign is better at aligning words having a small number
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Fig. 4 Scores obtained by Anymalign and MGIZA++’s translation tables on the bilingual
lexicon induction task. The scores within parentheses are global, calculated as described in
the 3rd paragraph of Section 2.3. The curves present the detail of these scores, according to
the number of occurrences of each alignment’s source word: one score has been calculated
locally for each word frequency. The curves have been smoothed for the sake of readability

of occurrences, while MGIZA++ is better at aligning more frequent ones. This is illustrated
on Figure 4.

Here, we are more interested in the relative position of the curves than in their gen-
eral shape: the curve for Anymalign is above that of MGIZA++ for words of about 1 to
5,000 occurrences, and below for more frequent words. This shows that Anymalign is better
at extracting not only rare words, but also medium frequency words. This observation has
been corroborated on other language pairs (de–en, es–en, fr–en).

However, the number of distinct rare word types is typically much higher in any text—
cf. Zipf’s law (Zipf 1965; Mandelbrot 1954; Montemurro 2004)—, with all the more reason
in our parallel corpus as well as in the translation tables produced. And since the evaluation
metrics (comparison with reference lexicons) considers word types rather than word tokens,
we might expect that our method should obtain better scores on bilingual lexicon induction
tasks, because the words it aligns best are overall the most numerous.

In contrast, the number of distinct frequent word types is typically much lower, but they
are all the more important in machine translation because a frequent word is much more
likely to reappear in the future than a rare word. This may contribute, to some extent, to
explain Anymalign’s low scores in machine translation. Ideally, we would like to be able to
choose between alignments produced by one or the other aligner depending on the frequen-
cies of source or target words, a goal that may be achieved, for instance, by combining the
translation tables. We will further investigate this issue in Section 5, and we concentrate, for
now, on aligning together words having different frequencies.

4 A generalization to arbitrary word strings

In this section, we present a generalization of our method, aiming primarily at improving
its performance on phrase-based statistical machine translation tasks. This generalization
retains most hypotheses of the original method: in particular, it only considers surface forms,
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and does not require any other resource than the input corpus. Our main objective will be to
extract more word n-grams with n≥ 2 (see Figure 2), which means mitigating the problem of
extracting together words with different frequencies (see Sec. 3.1). The following extension
is already integrated in the current version of Anymalign.

4.1 Improving the indexation step

We introduce the possibility to work at a variable resolution by indexing n-grams rather
than simple words. We do so without choosing a specific sentence segmentation scheme, for
instance into syntactic chunks; instead we index all the (possibly) overlapping n-grams in
a sentence. Consider, for instance, the following monolingual sub-corpus, made up of three
sentences:

1 a b c
2 a b d e
3 a c

Here, we only display a single language for simplicity, but in the case of a multilingual
corpus, we just repeat the same process for all languages in parallel (n-grams cannot span
several languages). The indexation step of all n-grams in this corpus, before collecting the
groups of same distribution that serve as a basis to extract alignments, produces the follow-
ing result:

n = 1 n = 2 n = 3 n = 4
a b c d e ab ac bc bd de abc abd bde abde

1 1 1 1 0 0 1 0 1 0 0 1 0 0 0
2 1 1 0 1 1 1 0 0 1 1 0 1 1 1
3 1 0 1 0 0 0 1 0 0 0 0 0 0 0

The next step of the algorithm, i.e. the identification of groups of words having the
same distribution, is accordingly modified as follows. When n-grams sharing the same dis-
tribution are overlapping, then the resulting group of words is made up of the “union” of
those n-grams. For instance, bigrams bd and de in the table above share the same distribu-
tion; they will be collapsed together into the larger group bde. In other words, groups are
no longer made of words with identical distribution; instead, they correspond to maximally
large n-grams with identical distribution. A given word may henceforth appear in several
groups, which was not the case in the original method.

This modification raises a new problem: n-grams may block out (n− 1)-grams, and do
so recursively. In the example above, this happens for the unigram b, which is masked by the
larger bigram ab which has the same distribution. As a result, b can no longer be extracted
separately, which would be the case if we would only look at unigrams. To get the best of
both worlds, it thus seems necessary to repeat the process independently for each value of n.

4.2 Three clustering strategies

In this section, we test different approaches for introducing each n-gram size during the
indexation step. We compare the following three strategies:

1. process n-grams separately depending on their length (strategy sep. in Table 3). This
means that we only extract words sequences that are made of n-grams of equal length
in the source and the target languages. Considering the example above, we first index
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only unigrams (column “n = 1”) and use them to extract alignments as in the original
method. Then, we index bigrams (column “n = 2”) separately and use them to extract
alignments, disregarding all indexed unigrams, and so on. Doing so is, of course, of
limited efficiency for language pairs such as Finnish–English: it would be better to allow
the association of a single word in the agglutinative language with several words from
the isolating language.

2. progressively mixing all n-gram lengths (strategy mix in Table 3). As with the previous
strategy, we first index only unigrams and use them to extract alignments. We then in-
dex bigrams, but we don’t use them separately as before; instead we consider the two
columns “n = 1” and “n = 2” simultaneously, and recreate all word groups: some are
identical to groups that were extracted for n = 1, in which case the counts of corre-
sponding alignments are reinforced (e.g. unigram a), some are new (e.g. bigram ac),
sometimes blocking out smaller associations (e.g. bigram ab masks unigram b). This
last issue does not matter anymore, though, as these will already have been extracted
in the previous step. Then we add trigrams, repeat the process, and so on. Associations
extracted for all values of n are finally gathered together and serve to increment the
extraction statistics.

3. force the alignment of n-grams of different lengths, by iteratively processing all possible
(source, target) length values (strategy force in Table 3). This actually enables to align
numerous n-grams with different lengths in the source and the target languages. Prac-
tically, we start again by indexing source unigrams and target unigrams and use them
to extract alignments. Then, we index source unigrams and target bigrams, and so on
(Cartesian product of all source and target lengths). This approach is computationally
more demanding than the others, as we need to repeat the indexation and extraction steps
for about nmax

2 times, where nmax is the largest n-gram considered, and is very unlikely
to scale up when we consider more than two languages. It is also the more prone to
learning spurious associations, as we will repeat the extraction process for a great num-
ber of times for any given sub-corpora. For instance, nothing prevents the algorithm to
associate English unigrams with long Finnish n-grams, a very unlikely association given
the morphology of these languages.

In order to compare these three strategies, we have prepared a set of 100,000 random
sub-corpora from Europarl (French–English) of various sizes, from which associations are
extracted according to each strategy. This experiment was performed using a maximum
n-gram length nmax ranging from 1 to 5 words. The resulting translation tables (5 values of
nmax for each of the 3 strategies = 15 tables in total), obtained from this very same set of
sub-corpora, are evaluated on the same tasks as previously: phrase-based statistical machine
translation (evaluation criteria are BLEU and TER (Snover et al 2006)) and bilingual lex-
icon induction, as described in Sec. 2.3. Results are presented in Table 3. Following Clark
et al (2011), because MERT is a non-deterministic optimization algorithm and results can
greatly vary between runs, all BLEU and TER scores reported in subsequent machine trans-
lation evaluations are averages over 5 independent runs. Note that we did not use a sampling
method to estimate the statistical significance of the observed differences, although this is
standard practice. The standard deviation is always very small in our experiments, typically
less than 0.1 BLEU or TER point.

As expected, the larger the maximal length of indexed n-grams, the more numerous
the entries in the translation table and the longer those entries. This is because associations
extracted for a given nmax contain those produced with a smaller nmax. The scores in bilin-
gual lexicon induction insignificantly improve as nmax increases for the two first approaches,



Generalizing Sampling-Based Multilingual Alignment 13

Table 3 Quality and characteristics of translation tables produced according to each of
the three word clustering strategies, for various values of the maximal n-gram length. Lines
where nmax = 1 are identical for the three strategies and correspond to the original method.
For each strategy, the best results in each column are in bold

Strat. nmax Lexicon induction (%) BLEU (%) TER (%) # entries Avg. entry length

1 36.19 21.14 63.59 83,967 1.92
2 36.71 22.65 61.94 277,858 2.79

sep. 3 36.66 23.10 62.09 366,971 3.13
4 36.60 23.21 61.43 393,453 3.24
5 36.58 22.96 62.19 399,810 3.27

1 36.19 21.14 63.59 83,967 1.92
2 37.08 23.59 60.69 290,631 2.78

mix 3 37.35 24.70 59.85 398,880 3.12
4 37.45 24.49 60.68 436,760 3.25
5 37.56 24.21 59.93 448,212 3.31

1 36.19 21.14 63.59 83,967 1.92
2 31.71 23.88 60.40 312,273 2.86

force 3 30.90 24.50 60.67 453,429 3.24
4 30.48 24.45 59.97 507,359 3.39
5 30.25 24.27 60.03 524,091 3.45

but they significantly decrease with the third one. The gain in machine translation quality
as measured by the BLEU and TER metrics, is significant with all three approaches: an
increase of 2 to 3.5 BLEU points is observed compared with the original version of Any-
malign (nmax = 1), i.e. more than 10% relative. Nevertheless, the second one seems to pro-
duce marginally better results according to the three evaluation criteria. Its execution time
is slightly higher than that of the first one (at worst twice as slow for 5-grams in our experi-
ments), but it is by far faster than the third one (from the order of the hour to that of the day
with 5-grams).

In the following experiments, we will adopt the second strategy (mix) which constitutes
a good compromise between the other two. Figure 5 presents the detail of column “# entries”
in Table 3 for this strategy, and is to be compared with Figure 2.

On the whole, incrementing by one the length of the indexed n-grams, i.e. moving from
a particular curve to the one immediately above, increases considerably the quantity of ex-
tracted n-grams. This increase mostly concerns n-grams longer than or equal to nmax, even
though a small increase of shorter n-grams is also observed, due to the extraction of comple-
mentary sets. The most obvious case is when we move from unigrams to bigrams (nmax = 2),
which makes the quantity of bigrams output escalate, and to a lesser extent, also increases
the quantities of all larger n-grams. The phenomenon also happens for larger values of nmax
but it gets less and less significant as nmax increases. The graph suggests that it is useless to
index n-grams made of more than 3 or 4 words, because the marginal return of those longer
n-grams gets very small. This does not matter much, as the multi-word associations which
are the most useful in machine translation are quite short (typically between 1 and 3 words).
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Fig. 5 Distribution of n-grams for the five translation tables obtained by the second word
clustering strategies. Each curve corresponds to a line in Table 3, and the sum of values
along the curve equals the number indicated in the column labeled “# entries” in that table.
The lowest curve (nmax = 1) corresponds to the original method

Table 4 Corpora used for the MT evaluation

Task Training Development Test # ref. / test sentence

BTEC: ar–en 19,972 1,512 489 7
BTEC: zh–en 19,972 1,512 989 7
Europarl: fi–en, fr–en, pt–es 350,645 2,000 2,000 1

4.3 More associations yields improved translations

In this section, we systematically compare our generalized extraction algorithm with a
standard MGIZA++/Moses baseline on several phrase-based statistical machine transla-
tion tasks. Table 4 presents the characteristics of the data used for each experiment: the
BTEC:ar–en train-dev-test sets are made of official sets from the IWSLT 2007 evaluation
campaign; for BTEC:zh–en it uses sets from the 2008 test campaign; and the Europarl dev
and test data have been randomly selected from Europarl v.6 following standard evaluation
practices. Results for the various conditions considered are summarized in Tables 5 and 6.

Lines with nmax = 1 correspond to the original version of Anymalign. As described in
Section 2.3, since Anymalign may be stopped at any time, the stopping condition we impose
depends on MGIZA++’s processing time. This time is constant whatever the value of nmax.
Since processing time increases with this parameter, the larger this parameter, the lower
the number of sub-corpora processed. This makes a big difference with the experiments
presented in Section 4.2 where the whole set of sub-corpora to be processed was defined
in advance, in which case the processing time was increasing with nmax. In principle, the
translation tables produced for a given value of nmax should be larger than with any lower
value, provided that the aligner runs long enough. This explains why the translation tables
in Tables 5 and 6 may contain less entries than with larger values of nmax. In practice, these
tables nevertheless contain much more long n-grams than for our original method, which
yields significant score improvements, even when the translation table is smaller.
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Table 5 Translation results on the BTEC

Aligner nmax BLEU (%) TER (%) # entries

MGIZA++ 33.66 46.13 217,512
Anymalign 1 26.27 51.18 170,521

ar–en - 2 30.90 49.69 269,454
- 3 31.80 51.46 273,197
- 4 33.76 48.80 258,141

MGIZA++ 15.48 70.45 141,773
Anymalign 1 14.72 69.04 158,904

zh–en - 2 16.29 71.73 263,315
- 3 16.55 70.58 250,292
- 4 16.84 69.42 269,353

Table 6 Translation results on Europarl

Same processing time as MGIZA++ Total CPU time = 20 MGIZA++

Aligner nmax BLEU (%) TER (%) # entries BLEU (%) TER (%) # entries

MGIZA++ 23.06 62.08 22,070,309
Anymalign 1 14.15 74.01 1,761,448 15.86 72.08 6,355,116

fi–en - 2 16.79 69.60 1,122,999 18.30 68.23 4,923,519
- 3 16.83 69.65 658,670 18.45 68.13 2,999,088
- 4 16.22 70.10 426,251 18.18 68.81 1,928,166

MGIZA++ 30.40 53.60 25,638,671
Anymalign 1 25.18 58.39 1,921,848 25.55 58.07 6,626,525

fr–en - 2 26.69 57.33 1,373,790 27.63 56.56 6,553,379
- 3 26.49 57.45 795,070 27.57 56.60 3,921,459
- 4 26.25 57.56 514,256 27.43 56.67 2,461,018

MGIZA++ 38.75 47.37 32,000,140
Anymalign 1 35.39 50.35 1,881,503 36.66 49.28 1,403,812

pt–es - 2 36.03 49.63 987,884 36.72 49.10 7,295,581
- 3 36.73 49.24 829,393 37.20 49.05 3,799,224
- 4 36.73 49.31 552,664 37.33 48.89 2,472,281

For the BTEC tasks, lines where nmax = 1 show that the original version of Anyma-
lign achieves BLEU scores that are comparable to those of MGIZA++ in Chinese–English,
and is much worse (by 7 BLEU points) in Arabic–English. For larger values of nmax, our
method outperforms MGIZA++/Moses by more than one BLEU point in Chinese–English,
and achieves comparable performance in Arabic–English, where we obtain a clear gain of
7 BLEU points.

For the Europarl tasks, the performance of the original version of Anymalign are sig-
nificantly below those of MGIZA++/Moses, which is consistent with the results obtained in
some previous experiments. In fact, the difference was not as strongly marked in our former
experiments: we observed a difference of 2 to 3 BLEU points on average, whereas it amounts
here to 6 points. This change might be due the use of much larger corpora: 350,000 sentence
pairs here versus 100,000 in the experiments of (Lardilleux 2010). Anymalign’s translation
tables are very small compared to those of MGIZA++/Moses, which seems to indicate that
the amount of time for which we run our algorithm is too small. Table 6 contains on its right
part a second series of results, corresponding to the execution of Anymalign for a total time
equal to 20 times MGIZA++’s processing time. In practice, as Anymalign allows for mas-
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Fig. 6 An illustration of the “garbage collector effect.” Numbers correspond to word counts
in the training corpus. The English word context, for which no direct translation exists in the
source sentence (its most probable translations in our corpus are contexte and cadre), was
wrongly aligned with the French hapax musumeci (a proper name)

sive parallelism, we have distributed the processing on 140 processes and executed them on
a cluster, so that the actual processing time was actually 7 times smaller than for the results
on the left part of the table. The sizes of translation tables in the right part of the table are
closer to those of MGIZA++, which confirms that the initial setting of the processing time
was not sufficient.6 The gain in BLEU is significant when nmax increases: we gain up to
3 BLEU points in Finnish–English (nmax = 3) just by running Anymalign for a longer period
of time. As can be seen in Table 6 (right part), in those conditions, the indexing of n-grams
yields an increase in BLEU ranging from 1.7 point in French–English to roughly 4 points in
Finnish–English. On average, the best scores of Anymalign remain 3.5 BLEU points below
those of MGIZA++, closing half of the initial gap.

5 Combining translation tables

The main conclusion of the previous section is that the generalization we have introduced
enables Anymalign to outperform the state-of-the-art MGIZA++ on “simple” phrase-based
machine translation tasks (as exemplified by the results on BTEC, which is made of short
and repetitive sentences), but it still lags behind on more difficult tasks (Europarl), in spite of
significant improvements. Therefore, rather than using Anymalign on its own, we consider
the benefits of using it as a complement of MGIZA++, as the two tools implement quite
different approaches.

As noted in Section 3.2, Anymalign is better at aligning rare words, whereas MGIZA++
is better at aligning frequent ones. In fact, rare words are much rarer in Moses’ default phrase
tables obtained using MGIZA++ alignments: on average, for the 5 language pairs in our Eu-
roparl corpus (de–en, es–en, fi–en, fr–en, pt–es), only 17% of source hapaxes in the parallel
corpus exactly match an entry in Moses’ phrase table (29% as part of longer phrases). In
comparison, this proportion rises to 61% with Anymalign (65% as part of longer phrases).
The small proportion of rare words in the translation table obtained with MGIZA++’s align-
ments is well documented and is sometimes referred to as the “garbage collector effect”
(Brown et al 1993a) (see also the recent analysis of (Graça et al 2010)): rare words in the
source language tend to link with many target words for which there is no direct translation
in the source language, while we would like to see such target words unaligned or aligned
to other source words. Figure 6 gives an actual example on Europarl data using the French–
English language pair.

6 This raises another issue: Anymalign’s stopping criterion. The current experiments suggest that our cur-
rent criteria result in sub-optimal performance, even though they allow a fair comparison with other tools.
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Table 7 Translation results on Europarl, using translation tables obtained by combining
Moses’ default phrase table with Anymalign’s

Aligner nmax BLEU (%) TER (%) # entries

MGIZA++ 23.06 62.08 22,070,309
Anymalign + MGIZA++ 1 23.08 62.15 27,983,561

fi–en - 2 22.53 62.59 26,408,141
- 3 22.44 62.57 24,597,428
- 4 22.22 65.52 27,584,655

MGIZA++ 30.40 53.60 25,638,671
Anymalign + MGIZA++ 1 30.41 53.71 31,710,782

fr–en - 2 30.68 53.62 31,384,607
- 3 30.10 53.89 28,887,597
- 4 29.39 54.58 27,584,655

MGIZA++ 38.75 47.37 32,000,140
Anymalign + MGIZA++ 1 38.89 47.35 37,828,876

pt–es - 2 38.81 47.20 37,409,893
- 3 38.84 47.27 34,991,893
- 4 38.93 47.27 33,825,477

In the example in Figure 6, even though the source word musumeci is linked here to
some target words, it does not appear in the final phrase table, because of the large distance
between the two target words it is linked to. In fact, a target phrase of eight words (from
musumeci up to context) would be necessary for it to appear in the phrase table, but we
rarely need to extract such long phrases because of their limited use.

On the other hand, Anymalign perfectly aligns French and English musumeci with trans-
lation probabilities of 1 in both directions. Therefore, in a last series of experiments, we
combine Moses’ default phrase table, which contains better alignments for frequent words,
with Anymalign’s, which contains better alignments for rare words. For this, we collect all
phrase pairs from Moses’ default phrase table and Anymalign’s. Each phrase pair is assigned
seven features: five from Moses’ default phrase table (2 translation probabilities, 2 lexical
weights, 1 length penalty) and two from Anymalign’s (2 translation probabilities). Phrase
pairs that appear in both phrase tables thus have 7 non-null feature scores. Phrase pairs that
only appear in Moses’ default phrase table have 5 non-null and 2 null feature scores, while
phrase pairs that only appear Anymalign’s phrase table have 5 null and 2 non-null feature
scores. Anymalign may thus contribute in two ways: (1) by improving the coverage of the
phrase table for low frequency words, and (2) by reinforcing phrase pairs extracted by the
two aligners, which are more likely to be accurate as they were independently collected with
the two alignment systems. The results of this experiment are reported in Table 7, and are to
be compared with the right part of Table 6 (long run of Anymalign).

Combining the phrase tables yields small improvements in terms of BLEU scores (up
to 1 BLEU point in French–English, nmax = 3), which are corroborated by improvements
in TER. The scores seem to fluctuate according to the value of nmax, the best results being
obtained for values of 2 or 3, and the worst with a value of 1 (often lower than Moses’
phrase table used alone). This further confirms that our generalization has a positive effect
on machine translation tasks.

In order to better understand those results, and try to determine the main effect of this
phrase table combination strategy, we computed the proportion of source phrases used by
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Table 8 Origin and frequency of phrases from the phrase table obtained by combination
used by the Moses decoder. The values in this table are averages over the 12 experiments of
Table 7 (the proportions are comparable whatever the language pair and the value of nmax)

Prop. of phrases (%) Avg. phrase freq. Avg. phrase length (in words)

Only Anymalign 2 3 1.09
Only Moses 16 19 2.76
Both 82 998 1.76

the decoder according to whether they occurred only in the default phrase table, only in Any-
malign’s, or in both. Table 8 reports these numbers along with average phrase frequencies
in the source input corpus.

The decoder only uses a handful (2%) of phrases obtained only by Anymalign, and
these correspond to very rare phrases, typically words occurring once in the training set and
once in the test set. This corroborates the analysis in Section 3.2. Phrases found only in
Moses’ default phrase table are more numerous (16%), and contrary to what we might ex-
pect, they mostly correspond to medium frequency phrases (19 occurrences on average for
more than 300,000 training pairs of sentences). This is because they correspond to longer
phrases (2.76 words in average, while the phrases occurring only in phrase tables obtained
by the generalized version of Anymalign, regardless of nmax, are 1.09 words long on aver-
age), and are thus quite infrequent. These results suggest that most of the gains reported in
Table 7 would rather result from reinforcement of phrase pairs which are extracted by the
two aligners. This was confirmed in a contrastive experiment where all the entries output
only by Anymalign are removed (i.e. the 2% of phrases used by the decoder as reported in
Table 8). We observe a negligible loss of 0.12 BLEU point on average on the 12 experiments
(4 values of nmax in 3 language pairs), showing that, indeed, most gains were due to the re-
inforcement of phrase pairs which are extracted by the two alignment systems, as described
above.

6 Conclusion

This paper has presented a generalization of the sub-sentential alignment method introduced
in (Lardilleux and Lepage 2008) aimed at improving its results in machine translation appli-
cations. The original method has many appealing properties: it may be stopped at any time,
is easy to parallelize, and is intrinsically symmetric. It has also been shown to obtain bet-
ter results than state-of-the-art approaches on bilingual lexicon induction tasks, but worse
results on phrase-based statistical machine translation tasks. Based on a careful reexami-
nation of the method, we showed that these discrepancies originate from two causes: (i) a
systematic failure at extracting groups consisting of both frequent and rare words, and (ii) a
tendency to extract noisy associations for frequent words, which is a primary handicapping
factor for machine translation tasks. To alleviate these problems, we proposed a general-
ization of the indexation strategy, which amounts to considering word n-grams, rather than
just single words, as the main indexation unit. Multi-word associations are now extracted
through multiple n-gram indexation steps, for increasing values of n.

The result of this generalization is a clear improvement of the number of n-grams that
are collected, yielding significant gains in phrase-based machine translation (up to +7 BLEU
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points on the Arabic–English pair). Our method is now neck and neck with state-of-the-art
approaches on “simple” machine translation tasks (BTEC), and we have managed to close
half the gap on more difficult tasks (Europarl). When combined with Moses’ default phrase
table, a modest, yet consistent improvement in BLEU is observed over several language pairs
and directions. These results represent a significant achievement, given that the underlying
model does not make use of any kind of alignment information.

This analysis opens several new avenues for exploration. On the one hand, we need to
reconsider our sub-corpora sampling strategy in the light of the new results reported above.
In particular, we need to find ways to increase the return of each sub-corpora in terms of
the number of extracted alignments. This will be all the more crucial as we try to move
towards transductive translation with “just-in-time” alignments, where associations will be
extracted at test time for those words or phrases that need to be translated.

Another major source of inefficiency in our approach is the fact that the discontinuous
fragments that are extracted through sampling are currently ignored and do not appear in
our translation table: this means that more than half of the extracted segments are simply
discarded. There are various ways to remedy this rather unsatisfactory state of affair, such
as introducing alignment constraints so as to compute associations for each part of the dis-
continuous fragment. Another obvious idea to take advantage of these fragments is to use
translation systems capable of handling these gappy units, e.g. hierarchical systems (Chiang
2007) or Dynamic Translation Memory as proposed by Biçici and Dymetman (2008).

Last, we also intend to consider generalizations of the method which can dispense with
pre-tokenization of the text. As explained above, the notion of a word in our models is just a
convenient way to identify the units to be indexed — it is thus tempting, albeit computation-
ally more demanding, to index character strings, a generalization that might prove useful
for some languages or language pairs, e.g. for languages which do not separate words by
spaces.
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