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The goal of this paper is to show that, contrary to preconceived ideas, one can efficiently
take advantage of low frequency words in natural language processing. We put them

to use in sub-sentential alignment, which constitutes the first step of most data-driven
machine translation systems (statistical or example-based machine translation). We show
that rare words can be used as a foundation in the design of a multilingual sub-sentential
alignment method, using differential techniques similar to those found in example-based

machine translation. This method is truly multilingual, in that it allows the simultaneous
processing of any number of languages. Moreover, it is very simple, anytime, and scales up
naturally. We compare our implementation, Anymalign, with two statistical tools proven

in the domain. Although its current results are on average slightly behind those of state of
the art methods in phrase-based statistical machine translation, we show that the intrinsic
quality of our lexicons is actually superior to that of lexicons produced by state of the art
methods.

Keywords: natural language processing; hapax legomenon; multilingualism; machine
translation; alignment; rare events.

1. Introduction

Sub-sentential alignment of parallel texts is an important preliminary task for nu-
merous natural language processing (NLP) applications like machine translation
(MT), multilingual information retrieval, or word synonymy detection. In the case
of machine translation, it constitutes a major preliminary step for most data-driven
systems, be they statistical (SMT) or example-based (EBMT). In general, the goal
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of sub-sentential alignment is to produce a translation table, a data representation
format originally used in phrase-based SMT. Translation tables consist of a set of
translation pairs along with associated translation scores. These scores may rep-
resent various features, like, typically, observed conditional probabilities, or may
reflect some computed likelihood that a given source unit translates to a particular
target unit. Other applications of sub-sentential alignment include, among others,
dictionary induction and term extraction.

Sub-sentential alignment methods can be divided into two main categories: the
estimative approach, introduced by Brown et al.,1 and the associative approach, in-
troduced by Gale and Church.2 The former consists in building a statistical model
of the bitext, the parameters of which are estimated through a global maximization
process, i.e., over all sentence pairs of the input parallel corpus simultaneously. Prac-
tically, the goal is to determine the best set of correspondences (alignment links)
between all source and target wordsa of each sentence pair. The latter approach
relies on a device that produces a list of translation candidates, each of them being
subject to an independence statistical test such as, for instance, Dice coefficient3 or
mutual information4 (see also more recent work by Melamed5 or Moore6). Those
translation candidates with an association measure higher than expected under the
independence assumption are assumed to be translation pairs. In this approach,
the process is a local maximization process, i.e., each segment is processed indepen-
dently.

On one hand, the estimative approach has gained much popularity within the
MT research community, mainly because it is mathematically well-founded, and
because some studies have shown that it generally outperforms associative models.7

In addition, it is tightly integrated within the SMT framework since the apparition
of the now ubiquitous IBM models,8 the most recent freely available implementation
of which is the tool MGIZA++.9 On the other hand, the best estimative models are
relatively complex when compared to the standard associative models: Tufis and
Barbu10 report that while the complexity of associative methods typically grows
quadratically with the size of the vocabulary, the complexity of estimative models
may be exponential. Another drawback of estimative models is that they result
in numerous parameters requiring fine adjustment in order to produce the best
possible results. The tools that implement such models typically have numerous
options that reflect these parameters.b Most users do not take the time to tune them
and eventually use such tools as a blackbox.6,11 For such reasons, recent research
in sub-sentential alignment has concentrated on improving associative approaches,6

or combining simple estimative models, like IBM models 1 and 2, and HMM,11 in
order to produce alignments of similar quality, if not better, but at a much lesser

aIn this paper, the term “word” refers to a surface form as identified by a tokenization program.
bFor instance, MGIZA++ is made of about 30,000 lines of code, has 58 command-line options,

and a standard run typically produces more than 20 temporary files. Aligning large corpora can
take days.
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computational cost.
The research reported here follows the latter trend, but quality of alignments is

not our only concern. In this paper, we propose an associative sub-sentential align-
ment method that fills several important gaps that most studies on sub-sentential
alignment have neglected until now. In particular, contrary to most sub-sentential
alignment models, our method is non-directional. As an important consequence, it
is not restricted to the processing of pairs of languages: any number of languages
can be aligned simultaneously; the method is multilingual from design. In addition,
the method relies on a single simple model, which allows for natural scaling to
very large input parallel texts, allows for massive parallelism, and makes it easily
accessible to non-specialists.

This paper is organized as follows. In Section 2, we evaluate the impact of rare
words in sub-sentential alignment through a series of observations. These observa-
tions will serve as a starting point in the design of a sub-sentential alignment method
in Section 3. Section 4 details the different steps that constitute the method, and
an optimization is proposed in Section 5. Section 6 compares our implementation
with state-of-the-art tools, and Section 7 concludes this work.

2. Useful facts about rare words

The study of low frequency words constitute the foundation of this work. We started
to focus on them because of a simple observation: although it is well known that
rare words are massively present in any text, they are underused in most NLP
tasks because of their low statistical significance. We believe on the contrary that
they can serve as a valuable resource due to their large number. The fact that the
majority of the vocabulary of a text actually corresponds to low frequency words
is usually illustrated by Zipf’s law.12,13,14 It expresses a relation between the rank
of words of a text ordered in decreasing order of frequency and this frequency: the
product rank × frequency is more or less constant. In other words, most words
have a very low frequency (content words), while very few have a high frequency
(function words). For instance, in a sample (about 350,000 sentences) of the English
part of the Europarl parallel corpus,15 words that occur at most 10 times represent
74% of the vocabulary. While some work rely on specific techniques to process rare
words efficiently,16 we will show how the study of their distribution can be used as
a cornerstone of an alignment method.

2.1. Hapaxes in corpora

Hapaxesc are words that occur only once in a text. Moore17 reports the following
widespread belief:

cFrom the Greek hápax legómenon ‘which has been uttered once’. In this paper, we use the plural
hapaxes for convenience.
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Consider the case of two words that each occur only once in a cor-
pus, but happen to co-occur. Conventional wisdom strongly advises
suspicion of any event that occurs only once [. . . ].

By definition, hapaxes are discarded in approaches that filter out low frequency
words. This is often the case in associative alignment methods since they usually
rely on a statistical significance test. For example, Cromières18 defines a lower bound
on word frequencies before considering a word for alignment; Giguet and Luquet19

define a threshold proportional to the inverse term length.
In addition to their infrequency, another prejudice against hapaxes is that they

often correspond to neologisms or misspellings.20 Neologisms should be considered
words on their own right. As for misspelled words, their quantity depends on the
quality of the corpus used. According to Nishimito,21 who interprets the results of
Evert and Lüdeling,22 each error in a corpus occurs only once in average. Misspelled
words are thus typically hapaxes, but their proportion within the totality of hapaxes
remains very low. In any case, they are not problematic in sub-sentential alignment
from parallel corpora: a hapax, if misspelled, is still a hapax, the only consequence
being that the resulting alignment will contain a misspelled word, with no impact
on the alignment process itself. In the case where a frequent word gets misspelled,
then we can assume that the alignments in which it intervenes will obtain very
low scores since the error presumably occurs only once, and the resulting erroneous
alignment will naturally be disregarded.

Even though they are generally discarded, hapaxes are very common. For exam-
ple, in the above-mentioned sample of the Europarl corpus, hapaxes cover 39% of the
total vocabulary. This figure is similar to those generally found in the literature.23

It reflects two main axes. The first one is the richness of the vocabulary, i.e. the
quantity of different words (word types) used in a text. Counts on Shakespeare’s
most read plays reveal that they contain 58% hapaxes in average.d The second axis
reflects the degree of synthesis of the language: isolating, synthetic, or polysyn-
thetic. The more synthetic a language, the more inflected words, hence the more
word types. The proportion of hapaxes increases accordingly. As a noticeable ex-
ample, Langlais et al.24 report more than 80% hapaxes on a corpus of Inuktitut,
a highly synthetic language of Canada. In such a case, rejecting hapaxes would be
tantamount to consider only 20% of vocabulary, which would seriously hinder the
quality of any subsequent task.

As a concluding remark, we emphasize that the proportion of hapaxes in a text
is almost constant, whatever the size of this text. This is illustrated on Fig. 1. When
increasing the length of a text, new occurrences of words that were previously ha-
paxes may be introduced, so these words are no more hapaxes; however, new hapaxes
are introduced as well. The relation between hapaxes and unknown words25,23,26

dCounts available at http://www.mta75.org/curriculum/English/Shakes/index.html (last vis-
ited on 14/01/11).
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makes them useful to estimate the behavior of MT systems on unknown words.
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Fig. 1. Proportion of hapaxes in the English part of the Europarl corpus. The proportion is almost
constant when the text has reached a certain length (here, around 1,000,000 word tokens).

2.2. Low frequency words in sub-sentential alignment

We now show that the majority of the best alignments obtained from parallel cor-
pora with a standard associative alignment method mainly consists of alignment of
rare words. Our goal here is not to obtain the best possible results, but to highlight
some characteristics of associative methods. To this end, we use a “simple” associa-
tive method that assigns to each possible pair of words (source, target) a single score
that reflects the probability that source and target are translations of each other.
Amongst the many available association scores, the cosine is a classical association
score used in various domains, such as named entity discovery,27 conceptual vectors
for semantic tasks,28,29 and of course sub-sentential alignment.19

The cosine method consists in defining a vector space whose number of dimen-
sions is the number of sentence pairs in the parallel input corpus. For each language,
we associate each word w to a vector w⃗ whose i-th element is the number of occur-
rences of w in the i-th sentence. For each pair of words (ws, wt), we then compute
the angle between their associated vectors, w⃗s and w⃗t:

angle(w⃗s, w⃗t) = acos
(

w⃗s · w⃗t

||w⃗s|| × ||w⃗t||

)
where u⃗ · v⃗ denotes the dot product of vectors u⃗ and v⃗ and ||u⃗|| the norm of vector
u⃗. The result is the score of the alignment (ws, wt), a positive real number ranging
from 0 to π/2 (inclusive). A score of 0 (i.e., a cosine of 1) means that the two
words are a priorie good translations because their associated vectors are collinear.
A score of π/2 means they are very unlikely to be translations.

eFor conciseness, we do not develop the fact that even alignments with angle 0 may be erroneous.
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We apply the previous method on the French-Spanish parts of the above-
mentioned sample of the Europarl corpus. The French vocabulary contains
73,695 word types (37% are hapaxes) and the Spanish vocabulary 93,043 (40%
are hapaxes). We thus obtain 73, 695 × 93, 043 ≃ 7 billion pairs of words along
with their associated scores. We then study the quality and quantity of alignments
according to the frequencies of the two words they are made of.

The left graph in Fig. 2 shows the a priori quality of alignments according to
the frequency of the source and target words. Only those alignments that consist
of (rare, rare) and (frequent, frequent) pairs of words have an angle greater than
π/6. All alignments for which at least one of the two words has an intermediary
frequency (say, from 10 to 100,000 occurrences) have an angle greater than π/3,
which corresponds to the vast white surface that occupies the majority of the figure.
Note the slightly emerging diagonal between the lower left and the upper right parts
of the figure, meaning that words of similar frequencies tend to align together.

Quality: average angle of alignments

1 10 1,000 100,000

Spanish word count

1

10

100

1,000

10,000

100,000

F
re

n
c
h
 w

o
rd

 c
o
u
n
t

0

π/8

π/4

3π/8

π/2
Quantity: average number of alignments

1 10 1,000 100,000

Spanish word count

1

10

100

1,000

10,000

100,000

F
re

n
c
h
 w

o
rd

 c
o
u
n
t

1

10

100

1,000

10,000

100,000

Fig. 2. Quality and quantity of word-to-word alignments obtained by the cosine method according

to the count of the words they are made of. The left figure shows that the best alignments are only
obtained from very rare or very frequent words (contour lines correspond to multiples of π/8).
The right figure shows that the most numerous alignments involve at least one rare word (contour
lines correspond to powers of 10).

The right graph in Fig. 2 shows the quantity of alignments according to the
frequency of the source and target words. The most numerous alignments consist
of (rare, rare), (rare, frequent), and (frequent, rare) pairs of words, while (frequent,
frequent) ones are almost nonexistent. This is naturally implied by the fact that
the majority of the vocabulary is made of rare words.

The conclusion of this study is that, when looking for quality and quantity in
sub-sentential alignment, one should seriously take pairs of rare words into consid-
eration. Neglecting them would be a mistake. See also work by Moore17 on log-
likelihood ratios and Fisher’s exact Test.
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2.3. Alignment of hapaxes

As mentioned above, even the “best” alignments (according to their angles) are not
necessarily good translations. In particular, when several hapaxes occur in the same
sentence, all source hapaxes get independently aligned with all target hapaxes with
a null angle. On the other hand, if there is only one source hapax and one target
hapax in a given pair of sentences, then the resulting alignment has much chance
to be correct. In order to determine if this commonly happens, we investigate the
distribution of hapaxes in our data.

The frequencies of hapaxes in our corpus are shown in Table 1. Although the
number of hapaxes generally represent half of the vocabulary, they appear in a small
set of sentences (9% in Spanish, 5% in French). More importantly, most sentences
containing a hapax (85% in both languages) actually contain only one hapax, with
an average of 1.2 hapaxes per sentence. Hence, the case where a source sentence
and its translation both contain a single hapax should not be uncommon.

Table 1. Frequencies of hapaxes in our Europarl corpus: proportion

of sentences that contain at least one hapax, proportion of sentences
that contain exactly one hapax, amongst those that contain at least
one, and average number of hapaxes per sentence.

Language At least 1 hapax 1 hapax Hapaxes/sentence

Spanish 9% 85% 1.2 ± 0.7
French 5% 85% 1.2 ± 0.8

Amongst those alignments with a null angle that are exclusively made of ha-
paxes, an important part (6,230 i.e. 21%) are alignments made of hapaxes from
sentences that contain only one hapax in both languages. These alignments suffice
to cover 7% of the Spanish vocabulary and 8% of the French vocabulary. Table 2
shows a sample of such alignments. These alignments are probably amongst the
best: discarding them only because they were obtained from hapaxes would be a
mistake. Note that Spanish and French are relatively close languages, and the re-
sults may get much worse on more distant languages. For instance, when performing
the same experiment on the Finnish-English parts of our sample of Europarl, we
obtained more than a half of erroneous alignments. Having said that, if one can ob-
tain good results on close languages with such a simple method, we might expect at
least as good results with a more evolved one. This is our focus in the next section.

3. Designing a sub-sentential alignment method using low
frequencies

We have so far focused on 1-1 alignments in a bilingual context, in particular with
hapaxes. In this section, we build on the previous results the necessary reasoning
in order to design a method that is able to produce m-n alignments, in more than
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Table 2. A sample of alignments of hapaxes from sentences that contain only one hapax.

Only one alignment is erroneous, marked by a star (fantoche ↔ oubliette).

Spanish French Meaning

descolonizar décolonisé ‘decolonized’

predeterminarán prédéterminerer (misspelled word) ‘predetermine’
wallner wallner ‘(proper name)’
h-0818 h-0818 ‘(identifier)’
*fantoche *oubliette ‘puppet’ / ‘oubliette’

burns burns ‘(proper name)’
pseudojuŕıdicos pseudo-juridiques ‘pseudo-legal’
h-0484 h-0484 ‘(identifier)’
antimaastrichtiana anti-maastrichtienne ‘anti-maastricht’

archiconocidos archiconnus ‘well-known’

two languages simultaneously, and for all words, whatever their frequencies.

3.1. Less data is better data

We previously mentioned that low frequency words were often discarded from as-
sociative alignment procedures because of their low statistical significance. Thus,
only words of sufficient frequency get aligned. In order to align rare words with a
method that concentrates on frequent ones, the accepted common wisdom in the
field recommends to increase the amount of input data, so that the counts of rare
words increase as well; once frequent, they can be aligned. However, when adding
new data, new words are also added, most of them being rare words (see Fig. 1 for
the case of hapaxes), which may result in an endless process. On the contrary, a
method relying on the exploitation of rare words would not require to add new data.
This is all the opposite, actually: removing data would suffice to perform alignment.
Adding new data is a potentially infinite process, removing data is not.

Considering a corpus as a whole constituted of a finite number of events entails
to assign a fixed probability to each of them. On the contrary, by removing data
from a corpus, as we intend to do, new corpora, i.e., new collections of data, can
be built. Many new input corpora are made available in this way. The number of
subcorpora of a given input corpus of n lines is 2n − 1, each one having its own set
of events and associated probabilities. As a result, to some extent, removing input
data is tantamount to adding even more data!

3.2. Advantages

In addition to making low frequency words more present, extracting alignments
from small subcorpora presents several advantages. We detail some of them.
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3.2.1. Modeling advantages

Simplicity Intuitively, aligning low frequency words should be simpler than align-
ing high frequency ones. Deciding whether two frequent words that appear
more or less in the same sentences have to be aligned is typically a decision
problem. There is no such question with hapaxes, for which no approxi-
mation is required: the two words appear in the same sentence, or they do
not.

Significance Rare events gain in significance, because they now happen in several
different subcorpora. In other words, no event is rare anymore.

3.2.2. Linguistic advantages

Disambiguation A hapax can only have one meaning in the text it appears in.
Consequently, when decreasing word counts by removing input data, a cer-
tain form of—temporary—disambiguation is implicitly performed, because
frequent words may become hapaxes and thus unambiguous in subcorpora
through this process.

Multilingualism As already mentioned, aligning several languages simultaneously
will become possible. However, this is more thanks to the way we shall
process rare words than because of their rarity itself: by extracting multi-
word units in a multilingual context assimilated to a monolingual one. This
point will be further investigated in the next section.

3.2.3. Computational advantages

Less memory The amount of data to be processed decreases when removing some
from input. Thus we can process large corpora without caring about mem-
ory resources required by the machine, and even modest computers will be
able to run the program.

Massive parallelism Since the alignment relies on subcorpora processing, we can
easily process different subcorpora on different processors or different ma-
chines. We just need to ensure that all processes launched are independent
and that their outputs can be merged.

3.3. Bringing together low and high frequencies

The last issue we need to address before moving to a fully specified alignment
method concerns high frequency words. One of the conclusions of Section 2 was that
the best alignments are constituted of rare words in large quantities and frequent
words in much smaller quantities, intermediate frequency words being unproductive
of alignments (Fig. 2). We consequently investigated the possibility to produce
alignments using only low frequency words, in particular hapaxes. There exists
however a case where a word cannot become a hapax by removing input data: very
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high frequency words remain very frequent, no matter the size of the subcorpus.
Consider for instance the case of the period (assimilated to a word), that presumably
appears in all sentences of a corpus. It is very difficult to align it by removing
data from a corpus because the only way to make it become a hapax would be to
consider a subcorpus of only one sentence. However, in such a subcorpus, almost
all words also occur only once: the period is not the only hapax in both languages
and therefore cannot be aligned separately. Ideally, we would like to process low
and high frequency words in a uniform way.

Actually, frequent and rare words have the following in common: they align well
by methods that only rely on their distribution in a corpus, as is the case with the
cosine method (Section 2.2). These are words that do not translate ambiguously in
the corpus used. Practically, they are words that share strictly the same distribution.

To summarize, our proposed associative method will not look for low frequencies
neither for high frequencies, but for words that strictly share the same distribution,
irrespective of their count. In practice, most of these words will have a very low
frequency (typically hapaxes), but some others will be very high frequency words,
like punctuations.

A first algorithm

We now have all we need to design a first algorithm. It consists of the three following
main points:

do
(1) Select a subcorpus
(2) Extract sequences of words that share the same distribution

loop
(3) Calculate scores for alignments

These three steps will be described in detail in the two next sections. The main loop
may run indefinitely. It can be interrupted by the user at any time, or when some
specific criteria are met, such as elapsed time, coverage of the input corpus, number
of new alignments obtained per second, etc. The number of subcorpora processed
does not influence quality, but rather quantity and significance of the results: the
longer the aligner runs, the more alignments, and the more significant their scores.

4. A detailed description of the method

4.1. Truly multilingual processing

In order to produce alignments in more than two languages simultaneously, we rely
on a particular transformation of the input multilingual corpus. Assume we have
the following Arabic-French-English toy input corpus:
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1 . ½Ê 	� 	̄ 	áÓ , �èñê�̄ ↔ Un café , s’il vous plâıt . ↔ One coffee , please .

2 . �è 	PA�JÜØ �èñê�̄ è 	Yë ↔ Ce café est excellent . ↔ This coffee is excellent .

3 . ÉJ
�®�K ø
 A
�� ↔ Un thé fort . ↔ One strong tea .

4 . �éÊJ
�®�K �èñê�̄ ↔ Un café fort . ↔ One strong coffee .

Our transformation consists in making this input corpus monolingual, where each
sentence is the concatenation of the different translations of one sentence of the
initial parallel corpus. In addition, all words are distinguished according to the
language they come from, so that words with identical surface forms but from
different languages are still considered different, as is the case here of the French
and English periods:

1 1 . 1½Ê 	� 	̄
1
	áÓ 1, 1

�èñê�̄ Un2 café2 ,2 s’il2 vous2 plâıt2 .2 One3 coffee3 ,3 please3 .3

2 1 . 1
�è 	PA�JÜØ 1

�èñê�̄ 1 è 	Yë Ce2 café2 est2 excellent2 .2 This3 coffee3 is3 excellent3 .3

3 1 . 1ÉJ
�®�K 1ø
 A
�� Un2 thé2 fort2 .2 One3 strong3 tea3 .3

4 1 . 1
�éÊJ
�®�K 1

�èñê�̄ Un2 café2 fort2 .2 One3 strong3 coffee3 .3

For the sake of the presentation, we use subscripts to distinguish words: 1 for Arabic,
2 for French, and 3 for English. Since this corpus is an abstraction over several
languages and does not imply any knowledge about these languages, we refer to it
as an alingual corpus. This kind of corpus is the starting point for all subsequent
processing.

4.2. Alignment extraction

The next step consists in extracting sequences of word tokens that share the same
distribution in a particular subcorpus. For this, we index each word of the subcorpus
according to the sentences it appears in. For simplicity, assume we start from the
subcorpus made of the first three lines of the above alingual corpus. We associate
to each word the vector of its occurrences, as was needed for the cosine method in
Section 2.2:

1 , 1ÉJ
�®�K 1ø
 A
�� 1½Ê 	� 	̄

1
�èñê�̄ 1

�è 	PA�JÜØ 1 	áÓ 1 è 	Yë ,2 ,3 1 . .2 .3 Ce2 One3 This3 Un2 café2 coffee3 est2 excellent2 excellent3 fort2 is3 . . .

1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 . . .
2 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 . . .
3 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 1 0 . . .

Sorting the columns makes identical vectors adjacent:

1 . .2 .3 1
�èñê�̄ café2 coffee3 One3 Un2 1 , 1½Ê 	� 	̄

1 	áÓ ,3 ,2 plâıt2 please3 s’il2 vous2 1 è 	Yë 1
�è 	PA�JÜØCe2 This3 est2 excellent2 . . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 . . .
2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 . . .
3 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

The result is a list of groups of words that share the same distribution. They can
be seen as our first alignments. In addition, since we assume that sequences of words
that share the same distribution are likely translations, we can also assume that
the remaining parts of the sentences are good translations as well. This principle
has often been used in example-based machine translation: for instance, Cicekli and
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Güvenir30 assume that the similar parts of two source sentences of a parallel corpus
are translations of the similar parts of the corresponding target sentences (same
for the differences). The main difference with our work is that we do not process
sentences by pairs, but by subcorpora, that may contain several sentences.

By doing so, each group of words produces up to two alignments for each sentence
it appears in: (1) the sequence of words made of the group itself, preserving the word
order from the sentence, and (2) the complementary of this sequence in the sentence,
i.e. its contexts. With our previous example,

the words:

appear
in sen-

tences:
from which we extract:

1
�èñê�̄ café2 coffee3

1
1
�èñê�̄ café2 coffee3

1 . 1½Ê 	� 	̄
1
	áÓ 1, Un2 ,2 s’il2 vous2 plâıt2 .2 One3 ,3 please3 .3

2
1
�èñê�̄ café2 coffee3

1 . 1
�è 	PA�JÜØ 1 è 	Yë Ce2 est2 excellent2 .2 This3 is3 excellent3 .3

...

The same is performed for each group of words having identical distribution,
and for various subcorpora. A given alignment may be obtained several times, from
different subcorpora or different sentences. The global result is a list of alignments
along with the number of times they were obtained. We eventually restore bound-
aries between languages according to word subscripts:

Arabic French English Count

�èñê�̄ ↔ café ↔ coffee 2

. ½Ê 	� 	̄ 	áÓ , ↔ Un , s’il vous plâıt . ↔ One , please . 1

. �è 	PA�JÜØ è 	Yë ↔ Ce est excellent . ↔ This is excellent . 1

...

4.3. Scoring alignments

The next step is to transform the list of alignments into a translation table by
computing scores for each alignment. We compute two types of scores that were ini-
tially proposed by Koehn et al.31: translation probabilities (alignment probabilities),
based on counts of alignments, and lexical weights, based on the counts of words
within the alignments. We generalize these standard scores so that they can be
used with multilingual alignments. In practice, given an alignment in L languages,
we calculate one score per language, that reflects the likelihood that the sequence
of words in this language translates simultaneously to all other sequences of the
alignment (to the L − 1 remaining languages). The same is done for both types of
scores, so that 2L numbers are assigned to each alignment. In the case of bilingual
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alignments, these numbers are the analogous of the traditional source-to-target and
target-to-source probabilities.

4.3.1. Translation probabilities

Translation probabilities are calculated from the number of times each alignment
was obtained. They reflect the probability that a given sequence of words si (in
language i: 1 ≤ i ≤ L) translates to the rest of the alignment:

P(s1, . . . , si−1, si+1, . . . , sL|si) =
C(s1, . . . , sL)

C(si)

with C(s1, . . . , sL) the count of the alignment (rightmost column of last table of
Section 4.2) and C(si) the sum of the counts of all alignments where si appears.
See Table 3 for examples.

Table 3. Examples of multilingual alignments along with their associated translation prob-
abilities and lexical weights. In this example, we used a subset of the English-French-
German Europarl corpus. The alignments displayed are those for the English sequence
loud applause, obtained by running our system for five minutes on 20,000 Europarl sen-

tences. The three translation probabilities are P(e|f, g), P(f |e, g), P(g|e, f). On the first line,
the first translation probability is P(vifs applaudissements, lebhafter beifall|loud applause)
= 122/(122 + 24 + 12 + 8 + 1) = 0.73.

English (e) French (f) German (g) Count Trans. prob.

loud applause ↔ vifs applaudissements ↔ lebhafter beifall 122 0.73 0.76 0.83
loud applause ↔ vifs applaudissements ↔ starker beifall 24 0.14 0.14 0.82
loud applause ↔ vifs applaudissements ↔ ( lebhafter beifall ) 12 0.07 0.09 0.67
loud applause ↔ applaudissements prolongés ↔ lebhafter beifall 8 0.05 0.17 0.05
loud applause ↔ ↔ beifall 1 0.01 0.00 0.01

4.3.2. Lexical weights

Lexical weights have been proposed by Koehn et al.31 to validate the quality of
alignments. They are known to slightly improve the quality of translations obtained
by statistical machine translation systems. Given a bilingual word alignment, the
goal is to check which target words each source word translates to, and to retain their
translation probabilities. When a source word translates to several target words, the
average of the alignment probabilities is used. The source-to-target lexical weight
is then the product of these scores. The same is performed from target to source,
and the result is a pair of lexical weights between 0 and 1.

We adapt this scoring method by introducing a major change. Our method does
not create links as estimative sub-sentential alignment methods do, so we do not
know which words correspond to which words within an alignment. Instead, our
method directly extracts multi-words translations pairs, in which no finer-grained
information is contained. Therefore, where Koehn et al.31 compute the average of
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the probabilities of linked words, we retain the maximum of the probabilities of
all possible links, i.e., from a source word to all target words. In our multilingual
context, this maximum is searched amongst all remaining languages. Lexical weights
are thus calculated as follows:

W(s1, . . . , si−1, si+1, . . . , sL|si) =
∏

wi∈si

maxwj∈
S

i̸=j sj

C(wi, wj)
C(wi)

with C(wi, wj) the co-occurrence count of words wi and wj on the list of alignments
and C(wi) the count of word wi. All word counts are weighted by the count of the
alignment in which the words occur.

5. Subcorpora selection strategy

In this section, we define a strategy whose goal is to optimize the efficiency of
our method. The only parameter required is the size of subcorpora from which we
extract alignments. Practically, the total number of subcorpora is too important to
process them all, as this number grows exponentially with the size of the initial input
corpus, and processing them all would be pointless. The distribution of subcorpora
according to their size is well approximated by a Gaussian: with n the size of the
input corpus, there exists only one subcorpus of size n, one of size 0, and a maximum
number of subcorpora of size n/2. However, we will not particularly focus on these
mid-sized subcorpora, because what is important is not the number of possible
subcorpora, but rather the number of correct alignments they can produce.

5.1. Definition of a probability distribution

The strategy we adopt consists in building subcorpora by random sampling accord-
ing to a particular distribution. There are three main reasons for this choice. First,
it allows for a quick discovery of alignments, contrary to an approach that would
require to provide the units to be aligned in input. Second, a random sampling
ensures that the “natural” distribution of words will not be altered: since a corpus
is generally constituted so that it represents a sample of a language,32 a sample of
this corpus should also represent a sample of this language. Eventually, this strategy
is very straightforward while already producing high quality results, although we
intend to move toward more elaborate strategies in further research.

Because of the randomness of this strategy, we might expect that two identi-
cal experiments yield different results. These differences are minimal in practice.
Another issue is that coverage of the input corpus cannot be guaranteed unless ex-
tracting alignments from numerous subcorpora. To deal with this issue, we define a
probability distribution that tries to maximize the coverage of the vocabulary of the
input corpus. Practically, this is achieved by ensuring that a maximum number of
sentences from the input corpus are drawn in a maximum of different subcorpora.
The distribution is used solely to draw the size of subcorpora. Once a subcorpus size
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is drawn according to this distribution, the corresponding number of sentences are
randomly chosen from the initial input corpus according to a uniform distribution.

Let xk be the number of subcorpora of k sentences to process. xk must ensure
that the probability that none of the sentences of a subcorpus of size k be never
chosen is below a certain threshold t that reflects the coverage of the input corpus:
the closer to zero, the better the coverage. Let n be the number of sentences in the
initial input corpus (1 ≤ k ≤ n):

• the probability that a given sentence is chosen in a sample of size k is k/n;
• the probability that it is not chosen is 1 − k/n;
• the probability that none of the k sentences is chosen is (1 − k/n)k;
• the probability that none of the k sentences is ever chosen is (1− k/n)kxk .

The number of subcorpora of size k to be drawn by sampling is thus constrained
by (1 − k/n)kxk ≤ t, which yields:

xk ≥ log t

k log (1 − k/n)

This formula means that processing at least xk random subcorpora of size xk guar-
antees the coverage of the input corpus vocabulary.

Rather than defining in advance a particular degree of coverage, which implies
a fixed number of subcorpora to process, we deduce from the preceding result a
probability distribution to randomly draw the size of the next subcorpus from which
to extract alignments:

p(k) ∝ −1
k log (1 − k/n)

The numerator, log t, was substituted for −1 because t is a constant: t ≤ 1 ⇒
log t ≤ 0. In the implementation we normalize this equality so that the p(k) sum
up to 1:

n∑
k=1

p(k) = 1

This distribution highly favors small subcorpora.f The purpose of the next section
is to show that this is indeed beneficial for our task.

5.2. Impact of subcorpus sizes

In this section, we study the impact of the size of subcorpora on the alignments
extracted by our method. The following experiments have been run on the French-
Spanish part of our previously used sample of Europarl, which is made up of roughly
350,000 sentences.

fSince small values of k come up most of the time, and having log(1 + x) ∼ x when x is small, the
distribution is close to 1/k2 most of the time.
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5.2.1. Processing time

First, the smaller a subcorpus, the faster it is to process. Figure 3 shows that
the time required to process a subcorpus is approximately linear in the number
of sentences it contains. Processing 1,000 subcorpora of 100 sentences will thus
typically take as much time as processing one subcorpus of 100,000 sentences. For
a fair comparison between subcorpora of different sizes, the next measures will take
into account the overall processing time rather than to the number of subcorpora
processed.
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Fig. 3. Time required to process a single subcorpus according to its size (in number of sentences).
Processing time increases almost linearly with the size of the subcorpus.

5.2.2. Quantity of alignments

Next, small subcorpora produce many more distinct alignments than larger ones,
as is shown in Fig. 4. Typically, the longer the elapsed time (hence the larger
the number of subcorpora processed sequentially), the more alignments obtained.
As we might expect, in the lower part of the figure, the number of alignments
obtained from subcorpora of only one sentence tends to be the number of sentences
contained in the main corpus (roughly 350,000): these are the aligned sentences
from the parallel corpus left untouched, no more no less. The fastest increase in
the number of alignments is approximately obtained with subcorpora made of two
to ten sentences. The number of distinct alignments then progressively decreases
when the size of subcorpora increases. At the top of the figure, and despite the fact
that this is hardly visible, the only subcorpus of size n produces the totality of its
45,548 possible alignments during its first run, which takes about 25 seconds.

From the implementation point of view, we do not randomly select subcorpora of
extreme sizes (1 and 350,000), as it is more efficient to process them all exhaustively.
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Fig. 4. Number of distinct alignments obtained by our method according to processing time and
subcorpus size. Small subcorpora yield more alignments. Contour lines correspond to multiples of

10 millions.

5.2.3. Quality of alignments

The size of subcorpora also impacts the quality of alignments extracted, which is
essential. The larger the subcorpora, the smaller the sequences of words that share
the same distribution, and the larger their contexts. Fig. 5 illustrates this tendency.
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Fig. 5. Average length of alignments obtained by our method according to the size of subcorpora
they have been extracted from. The smaller the subcorpus, the longer the sequences of words of
equal distribution and the shorter their contexts. The curve corresponding to all alignments (same

distribution + contexts) tends to follow that of the contexts because contexts are much more
numerous.

In a last experiment, we count the number of alignments which occur in a
French-Spanish reference lexicon according to the size of the subcorpora. This bilin-
gual lexicon mainly consists of unigrams (source-target word pairs). The results are
presented in Fig. 6. The maximum is reached with subcorpora made of roughly
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1,000 sentences. This shows that relatively small subcorpora can produce small
alignments that are also of good quality.
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Fig. 6. Number of word alignments found in a reference bilingual lexicon according to subcorpus
size. The system was run for 25 seconds in this experiment, which corresponds to the time required

to process the largest subcorpus. The curve increases very quickly and reaches the maximum for
subcorpora of about 1,000 sentences, then progressively decreases.

Summary: complete algorithm

Transform the multilingual parallel corpus into an alingual corpus
Initialize AlignmentCounts
do

Select a subcorpus of k sentences with p(k) = −1
k log (1−k/n)

Compute for each word its vector of presence/absence in sentences
Sort the words according to their vectors in order to build group’s
For each group of words:

For each sentence the group appears in:
Restore word order in group
AlignmentCounts[group] ++
AlignmentCounts[sentence - group] ++

until timeout or no new alignment is obtained or etc.
Compute scores for alignments

Figure 7 presents a screen shot of an alignment file produced by our tool.

6. Evaluation

All the evaluations described hereafter are bilingual because, to our knowledge,
there exists no other multilingual aligner (with the notable exception of work by
Simard33) or evaluation protocol. Hence, these experiments do not reflect all the



The Contribution of Low Frequencies to Multilingual Sub-sentential Alignment 207

...

Fig. 7. A screen shot of a multilingual alignment file produced by our method in HTML format
by running our aligner on a parallel corpus in 5 languages (only the top alignments are visible).

Our implementation supports several formats: simple text, HTML, TMX, and translation table
for the Moses SMT system.

potential of our method. We do not evaluate our implementation in an absolute
manner but compare it with two statistical tools that are considered as state-of-
the-art in the domain. They are relatively recent and are freely available software.
The three tools we thus compare are the following:

Anymalign g This is the implementation of our method. Its main differences with
the two other aligners are:

• the underlying method is close to associative alignment approaches,
and the alignment extraction phase uses concepts similar to those
found in some example-based machine translation systems.

• it does not create links between source and target words, but di-

ghttp://users.info.unicaen.fr/~alardill/anymalign
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rectly produces translations. Applications for which word position
is important (e.g., SMT) may miss this piece of information. For
other applications, this absence is likely to result in a gain in speed.

• it can be stopped at any time during its execution. Time has no in-
fluence on alignment quality, but on coverage: the longer the aligner
runs, the more alignments it outputs.

Because of this last point, in practice we will first run the other aligners,
measure their processing time, and run Anymalign during the same amount
of time. In order to evaluate the impact of the subcorpus size selection strat-
egy, Anymalign will be run twice: once using the distribution introduced in
Section 5.1, and once with a uniform distribution (i.e. all subcorpus sizes
are selected with equal probability).

MGIZA++ h It is the last descendant of the GIZA tradition.34,7,9 It implements
the ubiquitous IBM models,8 and serves as a foundation of many SMT-
related work. By default, it runs models IBM1, HMM, IBM3, and IBM4
for 5 iterations each. We will vary this number of iterations from 1 to 5.
These models are asymmetric, so they need to be executed once in each
direction (source to target and target to source) and their results must be
made symmetric in order to give the best results. We perform this with
the tools distributed with the Moses toolkit.35 Note that this step is not
required by Anymalign because its alignments are symmetric by design.

BerkeleyAligner i Introduced by Liang et al.,11 it relies on simple models such as
IBM1, IBM2, and HMM, which are trained jointly from source to target and
from target to source, in order to produce better results than by training
them separately as is the case with MGIZA++. The alignments it produces
are thus symmetric. This tool has advanced features such as supervised
word alignment, but for a fair comparison with the two other tools, we do
not use these features. By default, the tool runs IBM model 1 and HMM for
two iterations each. As with MGIZA++, we will vary this number from 1
to 5.

Although the three aligners are capable of parallel processing, for a fair com-
parison we use them on a single processor. Except for the number of iterations of
the models they run, we keep their default parameters values. A summary of the
programs we use in order to produce a complete translation table starting from a
parallel bilingual corpus is shown in Fig. 8.

In the following, execution times will be measured by including all steps, from the
input parallel corpus to the output translation table. We present detailed evaluation
results using a sample of the Europarl corpus (100,000 training sentences, Spanish
to French), as well as less detailed results on additional tasks.

hhttp://geek.kyloo.net/software/doku.php/mgiza:overview
ihttp://nlp.cs.berkeley.edu/Main.html#wordaligner
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Anymalign MGIZA++ BerkeleyAligner

Input: a bilingual parallel corpus

Alignment
(anymalign.py)

Source-target training
(mkcls + mgizapp)

Joint training

(berkeleyaligner.jar)
Target-source training

(mkcls + mgizapp)

Symmetrization
(Moses: symal)

Alignment extraction (Moses: extract)

Scoring (Moses: score)

Output: a translation table

Fig. 8. The three aligners in their respective processing chains. Anymalign does not need any pre- or

post-processing tools. We use Moses with BerkeleyAligner only to extract and score alignments.
MGIZA++ must be executed twice and its results made symmetric.

6.1. A first evaluation protocol: machine translation

Our first evaluation protocol consists in using the translation tables produced by
the aligners as the main knowledge source of a phrase-based SMT system, and to
evaluate the quality of the translations obtained. We use the Moses toolkit, which we
already use to post-process the output of MGIZA++ and BerkeleyAligner. Since the
Moses decoder relies on n-grams, we filter out discontinuous alignments produced
by Anymalign. The Moses engine is used with its default parameters, and we simply
replace its translation table by the one produced by each of the three aligners. We
first study the behavior of the aligners according to processing time, using our
Spanish-French parallel corpus. MGIZA++ and BerkeleyAligner are executed by
varying their number of iterations, from 1 to 5 for each model, and their processing
times are measured. Since Anymalign can be stopped at any time, we repeat the
same experiment for several execution times, starting from one second. We use
500 pairs of sentences for tuning with MERT36 and 500 for testing.

In Fig. 9, we plot the TER scores37 obtained by Moses using the translation ta-
bles produced by the three aligners. We evaluate three versions of Anymalign, which
allows us to measure the contribution of the two optimizations we proposed: lexical
weights and subcorpus size selection optimization. The best results (64% TER) are
obtained with MGIZA++ and BerkeleyAligner, the former being slightly faster.
Their scores are relatively constant whatever the number of iterations. The scores
of the “complete” version of Anymalign converge very quickly to 68% TER, which is
worse than the two other aligners. Lexical weights do not improve the results much
(by about 0.05% TER). They require more processing time, which explains why the
curve without lexical weights is below the “complete” one for the first 30 minutes.
The curve without subcorpus size selection optimization is far above all the others,
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and does not converge as neatly: the optimized distribution is clearly beneficial.
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Fig. 9. Behavior of the aligners on a machine translation task. The best TER scores are the lowest.
MGIZA++ and BerkeleyAligner produce comparable results. Anymalign produces slightly worse
results, and lexical weights do not help much. It performs poorly without optimization of subcorpus
size selection. Although this is not a critical issue for an aligner, Anymalign is by far the fastest.

Additional results are presented in Table 4. On tasks using the BTEC38 as train-
ing corpus (short sentences: 10 English words in average), Anymalign is 1 BLEU
point below the others on average. On tasks using Europarl as training corpus
(longer sentences: 30 English words on average), Anymalign is 2.8 BLEU points
below on average.

Table 4. BLEU scores obtained by Moses from Anymalign

and MGIZA++’s phrase tables on samples of the BTEC
and Europarl corpora in different languages.

Task Anymalign MGIZA++

IWSLT 2007 : ja → en 0.46 0.45

IWSLT 2008 : ar → en 0.37 0.41
IWSLT 2008 : zh → en 0.32 0.32
IWSLT 2008 : zh → es 0.25 0.24

Europarl: fr → en 0.25 0.29
Europarl: fr → es 0.32 0.36
Europarl: de → el 0.15 0.16
Europarl: el → de 0.14 0.16

Europarl: en → fi 0.11 0.12
Europarl: fi → en 0.16 0.21

6.2. A second evaluation protocol: bilingual lexicon induction

Our second protocol consists in comparing the translation tables to a bilingual
reference lexicon, weighting entries by their translation probabilities. As a pre-
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processing step, we filter the reference lexicon so that it only contains entries that
can actually be produced by the aligners from the training corpus. Practically, an
entry is kept if it is a subsequence of a pair of sentences in the training corpus. Then,
we compute a score as follows: sum up all source-to-target translation probabilities
for those alignments that are found in the reference lexicon, and divide by the
number of distinct entries in the reference lexicon. The reason for doing this kind of
evaluation is that our method dos not produce alignment links, which are necessary
with standard AER evaluations.39

Our reference bilingual lexicons come from the XDXF website.j Similarly to
our first protocol, we first study the behavior of our three aligners according to
processing time on our Spanish-French parallel corpus. The results are presented in
Fig. 10.
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Fig. 10. Behavior of the aligners on a bilingual lexicon induction task. Anymalign produces better
results than MGIZA++ and BerkeleyAligner and is much faster. Note that lexical weights are not

used in this evaluation: only translation probabilities are taken into account.

Here, Anymalign’s results are much better than those of the two other align-
ers: its score converges very quickly to 56%, while the maximum is only 47%
for MGIZA++ and 45% for BerkeleyAligner. In addition, the scores obtained by
Anymalign without optimized subcorpus size selection are also better; however it
converges much slower. The scores of MGIZA++ and BerkeleyAligner vary very
slightly, except from the first to the second iteration of BekeleyAligner.

Additional comparison between the three aligners are presented in Table 5. The
Bible corpus40 was used for this experiment with about 30,000 sentences (29 English
words in average) in each of seven languages. When comparing the scores obtained
by Anymalign and MGIZA++ on each of the 42 pairs of languages, in average,
Anymalign’s results are above by 7% relative to those of MGIZA++. On the same
tasks, BerkeleyAligner’s results are below by 7% relative to those of MGIZA++.

jhttp://xdxf.sourceforge.net/
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Table 5. Anymalign’s gains in score relatively to MGIZA++

on 42 bilingual lexicon induction tasks. An increase of 7% is
observed in average.

dan eng fin fra spa swe zho

dan + 3 –10 –15 + 9 +8 – 4

eng –15 –10 +13 + 2 –6 – 5
fin + 2 +36 +70 +53 +7 +11
fra –15 0 – 2 + 1 –3 + 5
spa – 9 +15 + 3 +13 –2 +15

swe – 4 + 7 –18 +19 + 7 – 1
zho –13 +16 0 +58 +31 +3

In summary, Anymalign is below the two statistical tools on phrase-based SMT
tasks, while it performs much better at inducing multilingual lexicons. We investi-
gate some causes of this difference in the next section. In any case, Anymalign is
much faster since it can produce almost instant results. The subcorpus size selection
optimization introduced in Section 5.1 allows to greatly speed up convergence of
the results.

6.3. Discussion and future research

The previous experiments show that Anymalign produces much better results on
bilingual lexicon induction tasks than on phrase-based SMT tasks. Since the bilin-
gual reference lexicons we use mainly consist of unigrams (1.2 words per entry in av-
erage), we naturally conclude that Anymalign produces better unigram alignments.
To confirm this intuition, we repeat the SMT experiment described in Section 6.1,
with the difference that we constrain the decoder to use only unigrams, i.e., the
translation tables only contain word pairs. This word-based system is comparable
to what was performed before the advent of phrase-based models. The new scores
are 68% for Anymalign, 68% for MGIZA++, and 67% for BerkeleyAligner. As ex-
pected, the scores are worse than previously: TER increases by 4% for MGIZA++
and BerkeleyAligner. The most noticeable point is that Anymalign’s score remains
unchanged, and is now comparable to those of the two other aligners, while it was
significantly worse in the first experiment. From this experiment, we deduce that a
weakness of Anymalign concerns the production of long n-grams.

We thus investigate why our approach does not align long n-grams in sufficient
quantity. To this end, we investigate the content of the phrase tables. We are partic-
ularly interested in the difference between unigrams and longer n-grams. Therefore,
we simply count the number of source n-grams in the translation tables produced by
Anymalign and MGIZA++, with n ranging from 1 to 7 (Moses’ default maximum
phrase length). The results are presented in Fig. 11.

The coverage of Anymalign’s phrase table is much better on unigrams: more than
80% of the source vocabulary is covered. However, it is far behind for all remaining
n-gram lengths. Experiments have shown that the larger the input corpus, the more
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Fig. 11. Coverage of the French part of our Europarl corpus by MGIZA++ and Anymalign’s
phrase tables. Unigram coverage is neatly higher with Anymalign. It is however much lower on all

remaining n-gram lengths, by far.

noticeable the differences. This suggests that the reason why a phrase-based MT
system would be less efficient when built on top of our alignment method would
not be a matter of quality, but rather of quantity : the method simply does not align
n-grams with n ≥ 2 in sufficient quantity.

In fact, the reason why long n-grams are not extracted in sufficient number by
our method is related to the frequency of the words they are made of. Since the
method consists in extracting sequences of words that share the same distribution,
including those that come from the same language, n-grams made of words of dif-
ferent frequencies are difficult to extract. And since most n-grams consist of words
with different frequencies (e.g., determiner + noun, pronoun + verb, etc.), most
n-grams may not be extracted.

Our current research focuses on improving the results of SMT systems built on
top of our alignment method. We have started to investigate two directions:

• improving the coverage of long n-grams. For this, we are generalizing our
method so that the indexation phase does not rely solely on words anymore,
but also on overlapping n-grams of various lengths. Our first results have
shown a major increase in n-gram coverage (up to ×10 n-grams), yielding a
boost of more than 4 BLEU points on some standard Europarl SMT tasks.

• combining Anymalign’s phrase table with MGIZA++’s or other statistical
tools. Since these aligners work in a very different way, their outputs are
quite different. For instance, more than 30% of the bigrams produced by
Anymalign in the previous experiment were not present in MGIZA++’s
phrase table. Taking their union, and possibly giving more credit to their
intersection, could result in a larger and more accurate phrase table.
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7. Conclusion

In this paper, we have proposed a multilingual sub-sentential alignment method
based on observations on the use of rare words in sub-sentential alignment. We
have shown that the majority of the vocabulary of a text consists of rare words
(typically 40% hapaxes) that appear in very few sentences (less than 10% sentences
for hapaxes), and this data sparseness is precisely the reason why they are so simple
to align. These observations allowed us to design a new sub-sentential alignment
method. It can process any number of languages simultaneously (e.g. we could align
60 languages of KDE system messages41), is very simple, anytime, and allows for
massive parallelism. Contrary to most preconceptions, we have shown that it is
possible to safely use rare words as a basis of an NLP task, by removing input
data. Our processes are alingual, which allows for multilingual, bilingual, and even
monolingual processing. Our implementation, Anymalign, is free software and is
available at http://users.info.unicaen.fr/~alardill/. It is competitive with
state-of-the-art tools (in average: −2 BP in SMT tasks, but +7% in bilingual lexicon
induction). Our current research focuses on improving its results in SMT, mainly
by improving coverage for long n-grams.
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22. S. Evert and A. Lüdeling. Measuring morphological productivity: Is automatic preprocessing
sufficient?, in Proceedings of the Conference on Corpus Linguistics 2001 (CL2001), Lancaster

(UK), pp. 167–175, 2001.
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