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Abstract. We address the problem of predicting unseen words by rely-
ing on the organization of the vocabulary of a language as exhibited
by paradigm tables. We present a pipeline to automatically produce
paradigm tables from all the words contained in a text. We measure
how many unseen words from an unseen test text can be predicted using
the paradigm tables obtained from a training text. Experiments are car-
ried out in several languages to compare the morphological richness of
languages, and also the richness of the vocabulary of different authors.
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1 Introduction

The current trend in natural language processing is to extract knowledge from
a training corpus, apply this knowledge to perform some task on a test set,
and measure the performance. As many techniques are generally first developed
for English, they take the typographic word as their basic processing unit. For
tasks such as speech recognition or machine translation, the words known by
the system constitute the vocabulary of the system. Unseen words, or out-of-
vocabulary (OOV) words, or new words, become a problem. Unseen words are
in fact of the same kind as hapaxes. Let us recall that hapaxes in any standard
English text are estimated to represent between 30 % to 50 % of the vocabulary
of the text (44 % on Part A of the British National Corpus) while being of course
unfrequent (less than 0.2 % of the total number of words in the same corpus).

In this paper, we address the problem of the predictability of unseen words:
given an unseen word, find all other words that may explain it. We consider com-
putational analogy as a possible way of explaining unseen words. For instance,
the unseen word inexhaustivity1 may be explained by: active : inactivity ::
exhaustive : x ⇒ x = inexhaustivity. In the present work, on the contrary

? This work was supported by a JSPS Grant, Number 15K00317 (Kakenhi C), entitled
Language productivity: efficient extraction of productive analogical clusters and their
evaluation using statistical machine translation.

1 No occurrence in Part A of the British National Corpus. Not present in the Oxford
Dictionary of English. As of July 2016, Google returns only 1,650 hits for this word.



Table 1. Examples of analogies in different languages illustrating different phenom-
ena. The formalization used in this paper captures infixing, but not repetition and
reduplication

Phenomenon Language Example

Repetition Indonesian
pasar : pasar-pasar :: kota : kota-kota

‘market’ : ‘markets’ :: ‘town’ : ‘towns’

Reduplication Latin
cado : cecidi :: pago : pepigi

‘I fall’ : ‘I fell’ :: ‘I conclude’ : ‘I concluded’

Infixing Arabic
kalb : kulaib :: masjid : musaijid

‘a dog’ : ‘dogs’ :: ‘a mosque’ : ‘mosques’

to, for instance, [10] or [5], we will not take into consideration the meaning of
words, but concentrate on the formal aspect of the problem. We adopt a standard
experimental protocol: we first train a model on some training data and then
test our model against some test set. The model trained is the set of paradigm
tables that can be extracted from the set of words contained in a corpus, here the
training set. This set of paradigm tables is supposed to reflect the organization
of the lexicon of a language to a certain extent. In our experiments, we rely on
it to predict new words, or rather, to measure how many of the unseen words
from a test set are predictable using the organization of the lexicon contained in
a training set as given by the paradigm tables.

For that, in Sect. 2 we present a pipeline, which relies on already reported
research based on computational analogy, to automatically produce paradigm
tables from all the words contained in a training text. We measure how many
unseen words from an unseen test text can be predicted using these paradigm
tables. Again, as we rely only on a computational definition of formal analogies,
we do not take meaning into account in this work. In Sect. 3, experiments are
carried out in different languages from four continents. At the same time, we
compare one author against other authors reporting similar events, namely the
Gospel of Luke against the three other ones. In this way, we attempt at charac-
terizing the morphological richness of these languages as well as the richness of
vocabulary of one author compared to other ones.

2 Pipeline for the Production of Paradigm Tables

The following pipeline relies on the notion of computational analogy between
strings of symbols proposed in [3]. The definition that we use here exploits a
specific notion of ratio between two strings of symbols to first build analogical
clusters which are then merged into paradigm tables.

2.1 Extracting Analogical Clusters

We firstly define the ratio between two words A and B as a vector of features
made of all the differences in number of occurrences in the two words, for all



the characters, whatever the writing system2; plus the distance between the two
words3. See definition in (1). The notation |S|c stands for the number of occur-
rences of character c in string S and d(A,B), is the edit distance between two
strings A and B. This definition of ratios captures prefixing and suffixing and
more generally infixing. Infixing is mandatory for a proper treatment of semitic
languages [11]. However, this definition does not capture reduplication nor rep-
etition. The latter one would be needed to capture marked plurals. Examples of
different phenomena are listed in Table 1.

A : B
∆
=


|A|a − |B|a

...
|A|z − |B|z

d(A,B)

 (1)

Based on the notion of ratio, we then define an analogy, more precisely a pro-
portional analogy of commutation between strings of symbols, as a relationship
between four objects where two properties are met: (a) equality of ratios between
the first and the second terms on one hand and the third and the fourth terms
on the other hand, and (b) exchange of the means. The exchange of the means
states that the second and the third terms can be exchanged. The notation and
the definition of an analogy are given in (2) at the same time4.

A : B :: C : D
∆⇐⇒

{
A : B = C : D
A : C = B : D

(2)

From the entire set of words contained in a text, we compute the set of
analogical clusters, i.e., series of word pairs in which any two word pairs is a
proportional analogy as defined in (2). Such analogical clusters are defined in (3).
Notice that the order of word pairs in analogical clusters has no importance.

A1 : B1

A2 : B2

...
An : Bn

∆⇐⇒ ∀(i, j) ∈ {1, . . . , n}2, Ai : Bi :: Aj : Bj (3)

To produce the set of analogical clusters, we first group pairs of words by
equal ratio in number of characters using the method proposed in [4]. The com-
plexity is O(n2) in the worst case with n the number of words. We then test for

2 Taken from the characterizations of proportional analogy of commutation in [3, 9].
3 Taken from the characterization of proportional analogy of commutation in [3]. The

only two edit operations involved are insertion and deletion. The purpose is to in-
directly take into account the number of common characters appearing in the same
order in A and B because d(A,B) = |A| + |B| − 2 × s(A,B) where |S| denotes the
length of string S and s(A,B) the length of the longest common sub-sequence (LCS)
between A and B.

4 Trivially, |A|a − |B|a = |C|a − |D|a ⇔ |A|a − |C|a = |B|a − |D|a. Hence,
the equalities on features added by A : C = B : D in (2) in fact reduces to one:
d(A,C) = d(B,D).



equality between distance for each word pair. This may split the sets of word
pairs in smaller sets of word pairs for which all word pairs have the same ratio.
Finally, for each such set of word pairs with equal ratio, we test for equality
in edit distance vertically, i.e., we verify that Ai : Aj = Bi : Bj for any pair of
word pairs (i, j) (see Footnote 4). Cases where the equality is not met lead to
split the set into smaller sets. Ideally, this is equivalent to extract all maximal
cliques in the undirected graph whose set of vertices is a word pair i and where
there is an edge between word pair i and word pair j if and only if the con-
straint Ai : Aj = Bi : Bj is met. Existing algorithms for this problem [1] are
time-consuming. For this reason, we adopt a heuristic which does not ensure
that all maximal cliques are output, but ensures that all nodes belong to one of
the maximal cliques output (see Algorithm 1).

We ensure that any two word pairs in a series of word pairs of equal ratio,
say, A, B and C, D, also verifies A : C = B : D.

2.2 Producing Paradigm Tables

Individual analogical clusters already give some insight at the organization of the
lexicon. Paradigm tables [8, 6, 2] give a more compact view by merging several
analogical clusters. A paradigm table is a matrix of words where four words from
two rows and two columns are an analogy (4). As the order on rows and columns
is indeed not relevant, one should think of a torus in three-dimensional space,
rather than a matrix in two dimensions.

P 1
1 :P 2

1 : · · · :Pm1
P 1
2 :P 2

2 : · · · :Pm2
...

...
...

P 1
n :P 2

n : · · · :Pmn

∆⇐⇒ ∀(i, k) ∈ {1, . . . , n}2,
∀(j, l) ∈ {1, . . . ,m}2, P ji : P li :: P jk : P lk

(4)

We create paradigm tables from analogical clusters as follows. A paradigm
table is first initialized from one analogical cluster and then expanded by adding
other analogical clusters to it. There are two possible ways of adding a cluster
to a paradigm table. In the first case, if a column in the paradigm table shares
at least three words with a column in an analogical cluster, this cluster can be
added vertically to it. In the second case, an analogical cluster shares more than
three words on a row of the paradigm table, so that the cluster can be transposed
and inserted to the paradigm table horizontally.

Algorithm 2 sketches the necessary functions for the production of paradigm
tables from analogical clusters. In these functions, the strategy is to process
longer analogical clusters first because the possibility of inserting smaller new
series in a paradigm table increases with the number of words it contains. To
ensure that no insertion is forgotten, the list of series of word pairs of equal
ratio is scanned several times. However, because clusters are added only to one
paradigm table, the complexity is O(n2) in the worst case with n the number of
clusters.



Algorithm 1 Building a set of analogical clusters from a set of words

function build clusters(set of words)
tree ← from the set of words . Hierarchically group words by their

. number of occurrences of characters.
repeat top-down exploration of the tree against itself

group pairs of words by equal difference
of number of occurrences of characters

until last character
for all set of word pairs with equal number of occurrences of characters do

check distance(set of word pairs)
end for

end function

function check distance(set of word pairs (A1, B1), . . . , (An, Bn))
for all i ∈ {1, . . . , n} do

compute d(Ai, Bi)
end for
for all set of word pairs (Ai, Bi) with same distance do

check cluster(set of word pairs)
end for

end function

function check cluster(set of word pairs (A1, B1), . . . , (An, Bn))
V ← {1, . . . , n} . Vertices of the graph.
E ← {(i, j) ∈ V2 / Ai : Aj = Bi : Bj} . Edges of the graph.
list ← nodes in V sorted by non-increasing number of edges
not yet covered ← V
repeat

i ← first node in list
delete i from list
if i ∈ not yet covered then

clique ← {i} . Initialize clique to singleton of not yet explored vertex.
clique, not yet covered ← expand clique(clique, list, not yet covered)
return clique . clique is an analogical cluster.

end if
until not yet covered = ∅

end function

function expand clique(clique, list, not yet covered)
for all i in list do

if i is connected with all vertices in the clique then
add i to the clique . Remains a clique.
delete i from not yet covered

end if
end for
return clique, not yet covered

end function



It is worth noticing that, when creating all possible paradigm tables from a
text, not all of the words will necessarily appear in a paradigm table. Recipro-
cally, paradigm tables extracted from texts may contain blank cells. A paradigm
table which does not contain any blank cell is not productive as no new word
can be entered in it. On the contrary, we will call any paradigm table which
contains at least one blank cell a productive paradigm table. We will call a word
that may fill a blank cell in a productive paradigm table a predictable word.

We simply define the size of a paradigm table as its number of rows mul-
tiplied by its number of columns. We measure the density of a paradigm table
as the ratio of non-blank cells over the total number of cells, i.e., the size of
the paradigm table. With this definition a non-productive table has a density
of 100 %. Productive paradigm tables have a density less than 100 %.

In the experiments reported hereafter, we monitor the density of the paradigm
tables produced by controlling the addition of analogical clusters: we add a clus-
ter to a paradigm table only if the density of the new paradigm table after
adding the cluster is above a given threshold. This is done by the condition in
the function expand table in Algorithm 2.

Algorithm 2 Building a set of paradigm tables from a set of analogical clusters

function build paradigm tables(set of analogical clusters, threshold)
tables ← ∅ . Set of paradigm tables, initially empty.
list ← set of analogical clusters sorted by non-increasing order of size
repeat

analogical cluster ← first analogical cluster in list
delete analogical cluster from list
table ← analogical cluster . Make analogical cluster a paradigm table.

. By construction, it has only 2 columns

. and a density of 100 %.
table, list ← expand table(table, list, threshold)
tables ← tables ∪ {table}

until list is empty
return tables

end function

function expand table(table, list, threshold)
repeat . Possibly scan the list several times.

for all cluster in the list (in non-increasing order of sizes) do
if cluster can be added to table and density of new table ≥ threshold then

add cluster to table (either transposed or not)
delete cluster from list

end if
end for

until no cluster can be added to table
return table, list

end function



3 Experiments

3.1 Languages and Texts Used

We selected several languages from four continents. We chose three languages
per continent. The choice of a language over another was first driven by the
availability of the texts themselves, the availability of a locale for pre-processing
and the confidence that we had that segmentation into words, when needed, did
not go wrong. We also tried to represent different linguistic families as much as
possible. The selected languages are the following ones.

Africa: Somali (so), Swahili (sw), Xhosa (xh);
America: Achuar (acu), Nahuatl (nah), Quichua (qu);
Asia: Chinese (zh), Indonesian (id), Telugu (te);
Europe: English (en), Finnish (fi), (Modern) Greek (el).

The texts we use in our experiments are texts available in a relatively large
number of languages: they are translations of the New Testament collected by
Christodoulopoulos5. We insist on using the same text in all languages so as
to ensure reliable observations and comparisons across languages to a certain
extent. We use Matthew’s Gospel as training data to produce paradigm tables.
We use Luke as our test set, i.e., we shall extract all words from Luke which do
not appear in Matthew and examine whether these words are predictable from
the organization of the vocabulary obtained from Matthew.

Table 2 gives statistics on the number of words in each language. The training
and the test sets are similar in subject and size. The numbers of tokens (all words)
and types (different words) are slightly higher in the test set than in the training
set. It is the same for the type–token ratio (with the exception of Quichua) but
the same variations across languages are observed

3.2 Statistics on the Productive Paradigm Tables Produced

Table 3 shows the number of productive paradigm tables produced in each lan-
guage for two different thresholds, 50 %, and 90 %. Let us first recall that we con-
trolled the density of the paradigm tables during their production. Second, as we
are interested in predicting new words, we left out non-productive paradigm ta-
bles. Productive paradigm tables have a density such that: threshold ≤ density <
100. Their number varies considerably across languages, from 220 (Chinese) to
11,349 (Achuar) for a threshold of 50 % (115 (English) to 2,783 (Achuar) for a
threshold of 90 %). Their average size is relatively stable around 55 for 50 %,
with Chinese an outlier at 88 (same observation for the threshold of 90 % with a
size of 14, Chinese behaving like other languages this time). For the threshold of
50 %, an average size of 55 may be interpreted as 7 rows by 8 columns, with half
of empty cells empty (3 rows by 4 columns with one blank cell for the threshold
of 90 %). However, finer observation shows that the distribution of the sizes of
paradigm tables in one language is not Gaussian.

5 http://homepages.inf.ed.ac.uk/s0787820/bible/. This corpus is a continuation
of previous efforts described in [7].



Table 2. Statistics on the training and test sets used in each language

Language
Training set (Matthew) Test set (Luke)

Number of
tokens

Number of
types

Type-token
ratio (%)

Number of
tokens

Number of
types

Type-token
ratio (%)

Achuar 22,470 5,349 23.8 23,177 5,609 24.2
Chinese 18,350 4,030 22.0 19,956 4,488 22.5
English 23,726 2,098 8.8 25,987 2,370 9.1
Finnish 17,331 4,467 25.8 18,804 5,003 26.6
Greek 20,438 3,819 18.7 21,856 4,367 20.0
Indonesian 22,375 2,450 10.9 23,623 2,650 11.2
Nahuatl 23,222 3,833 16.5 24,060 4,096 17.0
Quichua 15,038 4,066 27.0 16.332 4,249 26.0
Somali 20,375 3,967 19.5 21,535 4,244 19.7
Swahili 16,851 3,926 23.3 18,467 4,411 23.9
Telugu 13,083 6,066 46.4 14,404 6,747 46.8
Xhosa 14,505 5,580 38.5 15,537 6,265 40.3

The product of the first three columns in Table 3 directly gives the number
of non-blank cells in the paradigm tables, and indirectly, the number of blank
cells. For instance for English, with a threshold of 50 %, we have 587 × 49.5 ×
(100−58.3)/100 = 12, 117 blank cells. This is the number of words which are pre-
dictable from the organization of the vocabulary given by the paradigm tables.
It is of course natural that the number of unseen words which can actually find a
place in the paradigm tables be lower for a higher density threshold, in absolute
numbers. For instance, for English we observe a decrease from 12, 117 predictable
words for a threshold of 50 % to only 115 × 12.6 × (100 − 91.8)/100 = 119 pre-
dictable words for a threshold of 90 %.

3.3 Predicting Unseen Words using Productive Paradigm Tables

We now turn to the experiments in filling paradigm tables with unseen words.
The results are also given in Table 3. The number of unseen words in the different
languages ranges from a little bit less than 1,000 (English and Indonesian) to
almost 5,000 words (Telugu). This reflects a known fact: Luke would have a richer
vocabulary than the other Evangelists, and this seems to have been carried over
in translation. In Table 3, these numbers are repeated for the two thresholds.

As for prediction, it is natural to expect that the number of predicted unseen
words would decrease for a higher threshold of density, because the number of
blank cells in the paradigm tables is smaller. Table 3 shows this phenomenon
(Ratio of Unseen words): a reduction from 15 % to around 1 % of predicted
unseen words is observed in average. This is the ratio of words from Luke, which
were unseen in Matthew but can fill in a blank cell in some of the paradigm tables.



Table 3. Statistics on productive paradigm tables produced from the training set with
density thresholds of 50% (top) and 90 % (bottom) and predicted unseen words from
the test set in each language

Productive paradigm tables Unseen words

Language
Total

number
Avg size

Avg
density

(%)

Total
number

Predicted Ratio (%)

Achuar 11,349 49.1 53.4 2,801 748 26.7
Chinese 220 88.4 55.9 2,497 193 7.7
English 587 49.5 58.3 858 75 8.7
Finnish 2,147 49.7 57.6 2,597 331 12.7
Greek 793 64.1 57.7 2,238 352 15.7
Indonesian 790 48.3 57.8 940 126 13.4
Nahuatl 512 67.9 57.1 2,143 296 13.8
Quichua 4,478 59.3 55.0 2,170 900 41.5
Somali 2,078 61.8 55.1 1,929 392 20.3
Swahili 2,067 53.6 56.5 2,381 430 18.1
Telugu 557 74.4 56.0 4,485 459 10.2
Xhosa 3,501 60.2 55.2 3,807 734 19.3

Achuar 2,783 13.8 91.7 2,801 90 3.2
Chinese 198 13.3 91.7 2,497 7 0.3
English 115 12.6 91.8 858 1 0.1
Finnish 611 14.7 91.7 2,597 31 1.2
Greek 530 17.7 91.5 2,238 61 2.7
Indonesian 178 12.7 91.7 940 4 0.4
Nahuatl 303 16.6 91.7 2,143 33 1.5
Quichua 2,728 17.8 91.5 2,170 217 10.0
Somali 1,411 17.7 91.6 1,929 76 3.9
Swahili 648 14.2 91.7 2,381 37 1.6
Telugu 316 16.4 91.7 4,485 34 0.8
Xhosa 2,209 15.6 91.6 3,807 142 3.7

Across languages, one observes variations which are not necessarily the same for
the two thresholds. As one can interpret the ratio of 90 % to correspond to a safer
production of new words, in a same language, the ratio (not given here) between
the predicted unseen words for the two thresholds, gives the proportion of reliable
words produced. This proportion is quite high for Quichua: 215/900 = 24 %,
while it is quite low for English: 1/75 = 1.3 %. These figures characterize in
some way the morphological richness of the languages.

4 Conclusion

In this paper, we presented a pipeline for the production of paradigm tables
from words contained in a given text by relying on a formalization of analogy.



The blank cells in the produced paradigm tables stand for potential word forms.
We carried out experiments to see how many of the words used by an author
can be predicted from such paradigm tables in comparison to another author.
The results obtained in a variety of languages of the world, with two different
thresholds for the density of the paradigm tables produced, can be used to char-
acterize relative morphological richness of languages as well as the richness of
the vocabulary of authors.
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