
Ambiguity Spotting using WordNet Semantic

Similarity in Support to Recommended Practice for

Software Requirements Specifications

Jin MATSUOKA
IPS, Waseda University

Kitakyushu, Japan
jinmatsuoka@akane.waseda.jp

Yves LEPAGE
IPS, Waseda University

Kitakyushu, Japan
yves.lepage@aoni.waseda.jp

Abstract—Word Sense Disambiguation is a crucial problem in
documents whose purpose is to serve as specifications for
automatic systems. The combination of different techniques of
Natural Language Processing can help in this task. In this paper,
we show how to detect ambiguous terms in Software
Requirements Specifications. And we propose a computer-aided
method that signals the reader for possibly ambiguous usage of
terms. The method uses compound term measure (C-value),
WordNet semantic similarity (WordNet wup_similarity) and a
proposed semantic similarity measure between sentences.

Keywords-SRS, WordNet, Semantic similarity, Clustering, C-
value, Ambiguity spotting

Ⅰ. INTRODUCTION AND BACKGROUND
In the manufacturing industry, QCD is an acronym for

Quality, Cost and Delivery for methods that use metrics on
these three factors to ensure low cost, high quality and on-time
delivery in the production of goods. Software being a product
as any other one, similar methods have spread into the
software development industry, leading, in particular, to the
adoption of software metrics to ensure the quality of programs
(from number of lines of codes per function to cyclomatic
complexity or the like).

As software development does not reduce anymore to
programming, the last decades have also seen radical
improvements for upstream software design with the
introduction of different methods (MERISE, VDM, Z notation,
object- or aspect- oriented paradigms), together with a
modeling languages like VDM-SL or UML.

As the very first step in software design remains
requirements, the concern about quality upstream has led to a
certain number of recommendations like IEEE std 8301 for
Software Requirements Specifications (SRS) themselves. SRS
are texts written in natural language that mainly describe the
functionalities of the software to deliver. Among other
problems, the above-mentioned set of recommendations
pinpoints contradictions or ambiguities, and the problem of
their early detection.

Contradictions can be addressed using formal methods
relying on ontologies and/or description logic, for which tools
like Alloy [3], spin, LTSA exist. The methods are using first
order predicate logic or extended first order predicate logic.

However, such methods are usually heavy to implement and
generally require the involvement of experts. Also, in the filed
of Natural Language Processing (NLP), they try to solve the
problem with deep (semantic) parsing.

This paper is concerned with the problem of the detection
of word ambiguity in SRS as a means to contribute to software
development quality, and pleads for computation-light
resource-based techniques. In Natural Language Processing
(NLP), the problem of Word Sense Desambiguation (WSD)
has been addressed in the framework of Information
Retrieval/Extraction (IR/IE) [4], [5], [6] or Machine
Translation (MT) [7], [8] with a different perspective from ours.
Research close to our perspective is [1], [2], the difference
being that our approach relies on similarity computation in a
hierarchical semantic network. Our goal is to design a checker
that will run on SRS texts and spot possibly ambiguous words
or terms inside sentences. The purpose is to help a human
reader to make a decision about the correct use of the word or
term.

The rest of the paper is organized as follows: Section Ⅱ
introduces the resource that we propose to use, and the NLP
techniques at the core of our proposed method. Section Ⅲ
gives an overview of the proposed method and presents the
processing flow. Section Ⅳ presents an experiment on a real
SRS text and reports some measures so as to evaluate our
method.

Ⅱ. THE NLP RESOURCE AND TECHNIQUES USED
We introduce a resource and three techniques for detecting

ambiguous terms. Two techniques of similarity are like a kind
of knowledge based method and another is linguistic and
mathematical method.

A. The WordNet semantic network
The WordNet semantic network is a hierarchical semantic

view of the vocabulary of a language. Other name is Lexical
Ontology. The first one was created at the University of
Princeton for English, and there now exists such semantic
networks for a range of languages, among which, Japanese2.

1 http://standards.ieee.org/findstds/standard/830- 1998.html
2 http://nlpwww.nict.go.jp/wn- ja/index.en.html/s.

The nodes in a WordNet are sets of synonyms (synsets for
short) that stand for a concept. An ambiguous word, i.e., a word
with more than two different meanings, will thus belong to two
different synsets. For instance, the word /ika/ in Japanese is
ambiguous, as it can be found in two different synsets in the
Japanese WordNet. The two meanings are: 'a toy consisting of
a light frame covered with tissue paper, a kite' and 'cooked
squid'3. In the context of a sentence, it is usually possible to
decide the meaning of 'ika' from the other words in the
sentence:

..Top

.LCS

.1

.s1 .

.1

.s2 .

.20

.19

.1

.18

.20

.19

.1

.18

Fig. 1. Computation of the semantic similarity between the two synsets for
the same words /ika/: ‘kite’ and ‘cooked squid’. The figure shows the two
synsets and their paths to the top of the hierarchy in WordNet. The least
common concept is in noted as physical entity. The value of the similarity is
2 × length(path3)/ (length(path1) + length(path2)).

a word with more than two different meanings, will thus
belong to two different synsets. For instance, the word /ika/
in Japanese is ambiguous, as it can be found in two different
synsets in the Japanese WordNet. The two meanings are: ’a
toy consisting of a light frame covered with tissue paper, a
kite’ and ’cooked squid’3. In the context of a sentence, it is
usually possible to decide the meaning of ’ika’ from the other
words in the sentence:

Sentence Meaning
‘kite’ ‘cooked squid’

We raise an /ika/ on the hill. yes no
We fry an /ika/ in oil. no yes

Links between synsets describe different semantic relations
like holonymy/meronymy (whole/part), antonymy, etc. In par-
ticular, the relationships of hypernymy/hyponymy define a
hierarchical structure between syntsets. The hierarchy has a
top node (concept), and thus allows for the computation of
semantic similarity.

B. Semantic similarity in WordNet

As the hypernymy/hyponymy hierarchy of WordNet has a
top node (concept), any two synsets can be assigned a semantic
similarity measure using the hypernym/hyponymy hierarchy.
For any synset s, the length of the path from the top of the
hierarchy to the synset is noted as depth(s). Now, for two
synsets s1 and s2, it is possible to find their lowest common
synset by going up towards the top of the hierarchy; this synset
is denoted as lcs(s1, s2). The semantic similarity of s1 and s2

is defined using the common node (concept) of the paths of
the two synsets to the top of the hierarchy. Using a formula à
la Dice coefficient, one defines:

wup similarity(s1, s2) =
2 × depth(lcs(s1, s2))
depth(s1) + depth(s2)

(1)

The Wu and Palmer [9] similarity metric measures the depth
of two given concepts (synsets) in the WordNet taxonomy.
There are other similarity metric measures in WordNet. ex.
Lin similarity [10], Lesk similarity [11]and so on.

3The Japanese WordNet misses a third basic meaning: ’A squid (animal)’.

As a word may belong to several synsets, the semantic sim-
ilarity between two words is defined as the smallest similarity
between all the possible synsets the two words at hand belong
to. In addition, equality of part of speech is required.

word sim(w1, w2) = max
(si,sj)

wup similarity(si, sj)

this maximum being taken over all (si, sj) such that:

w1 ∈ si ∧ w2 ∈ sj ∧ POS(w1) = POS(w2)

where POS is part of speech. In the absolute, a term is
ambiguous if it belongs to several synsets. This is the case of
our example word /ika/. However, when used in a sentence, a
word has usually one meaning. This meaning is constrained by
the other words in the sentence. The disambiguation process
relies on the fact that the other words in the sentence are
closer to one of the synsets the ambiguous word belong to.
This synset is naturally preferred for the interpretation of this
word in the sentence and thus becomes the meaning of this
word in the sentence. To simulate this disambiguation process,
we thus compute the similarity of each word of a sentence
with the ambiguous word. The intuition would be that the
average of the similarities of each word in the sentence with
the ambiguous word would lead better disambiguation. Our
experiments showed that taking the max over the words in the
sentence delivers better results.

Let a word w belong to the synset s, and let this word
appear in a sentence S. We define the semantic value of the
synset s for the w in the sentence S in the following way:
sem val(s, S) =

max
sj/wi∈sj∧wi∈S\{w}

word sim(s, wi)

This is applied to disambiguate a word w with several synsets
si by taking the synset which exhibits the highest semantic
value. In other words, the meaning s (a synset) of an ambigu-
ous word w in a sentence S is defined as:

s = arg max
si/w∈si

sem val(si, S)

To illustrate with an example, let us see the result obtained
for the sentence: we raise a /ika/ in the park.

We raise an /ika/ in the park
‘kite’ 0.00 - - - - - 0.56
‘cooked squid’ 0.00 - - - - - 0.22

In the general case, several synsets may get the same max
value, so that arg max may be a set with several elements,
which is a case of ambiguity. On the following sentences that
all contain the word /ika/, the previous definition leads to the
results shown on the right column of the following table. These
results clearly show that disambiguation is performed rightly
in the obvious cases, while the word /ika/ remains ambiguous
in more subtle cases, meeting human intuition.

Links between synsets describe different semantic relations

like holonymy/meronymy (whole/part), antonymy, etc. In
particular, the relationships of hypernymy/hyponymy define a
hierarchical structure between syntsets. The hierarchy has a top
node (concept), and thus allows for the computation of
semantic similarity.

B. Semantic similarity in WordNet
As the hierarchy of WordNet has a top node (concept), any

two synsets can be assigned a semantic similarity measure
using the hierarchy. The Wu and Palmer similarity metric uses
the depths of two given concepts (synsets) in the WordNet
taxonomy. There are several similarity metrics for WordNet
like Lin similarity [10], Lesk similarity [11] or Wu and Palmer
similarity [9]. For any synset, the length of the path from the
top of the hierarchy to the synset is noted as depth(s). Now, for
two synsets s1 and s2, it is possible to find their lowest
common synset by going up towards the top of the hierarchy;
this synset is denoted as lcs(s1,s2). The semantic similarity of
s1 and s2 is defined using the common node (concept) of the
paths of the two synsets to the top of the hierarchy. Using a
formula a la Dice coefficient, one defines:

!

wup_ similarity(s1,s2) =
2 " depth(lcs(s1,s2))
depth(s1) + depth(s2)

Figure 1 illustrates the above equation and it's computation.
 As a word may belong to several synsets, the semantic
similarity between two words is defined as the smallest
similarity between all the possible synsets the two words at
hand belong to. In addition, equality of part of speech is
required.

!

word _ sim(w1,w2) =
(si ,s j)
maxwup_ similarity(si,s j)

this maximum being taken over all (si,sj) such that:

!

w1 " si #w2 " s j # pos(w1) == pos(w2)

The nodes in a WordNet are sets of synonyms (synsets
for short) that stand for a concept. An ambiguous word, i.e.,
a word with more than two different meanings, will thus
belong to two different synsets. For instance, the word /ika/
in Japanese is ambiguous, as it can be found in two different
synsets in the Japanese WordNet. The two meanings are: ’a
toy consisting of a light frame covered with tissue paper, a
kite’ and ’cooked squid’3. In the context of a sentence, it is
usually possible to decide the meaning of ’ika’ from the other
words in the sentence:

Sentence Meaning
‘kite’ ‘cooked squid’

We raise an /ika/ on the hill. yes no
We fry an /ika/ in oil. no yes

Links between synsets describe different semantic relations
like holonymy/meronymy (whole/part), antonymy, etc. In par-
ticular, the relationships of hypernymy/hyponymy define a
hierarchical structure between syntsets. The hierarchy has a
top node (concept), and thus allows for the computation of
semantic similarity.

B. Semantic similarity in WordNet
As the hierarchy of WordNet has a top node, any two

synsets can be assigned a semantic similarity measure using
the hierarchy. The Wu and Palmer similarity metric uses
the depths of two given concepts (synsets) in the WordNet
taxonomy. There are several similarity metrics for WordNet
like Lin similarity [10], Lesk similarity [11] or Wu and Palmer
similarity [9]. For any synset s, the length of the path from the
top of the hierarchy to the synset is noted as depth(s). Now,
for two synsets s1 and s2, it is possible to find their lowest
common synset by going up towards the top of the hierarchy;
this synset is denoted as lcs(s1, s2). The semantic similarity
of s1 and s2 is defined using the common node of the paths
of the two synsets to the top of the hierarchy. Using a formula
à la Dice coefficient, one defines:

wup similarity(s1, s2) =
2 × depth(lcs(s1, s2))
depth(s1) + depth(s2)

(1)

Figure 1 illustrates the equation (1) and it’s computation.
As a word may belong to several synsets, the semantic sim-

ilarity between two words is defined as the smallest similarity
between all the possible synsets the two words at hand belong
to. In addition, equality of part of speech is required.

word sim(w1, w2) = max
(si,sj)

wup similarity(si, sj)

this maximum being taken over all (si, sj) such that:

w1 ∈ si ∧ w2 ∈ sj ∧ POS(w1) = POS(w2)

where POS is part of speech. In the absolute, a term is
ambiguous if it belongs to several synsets. This is the case of
our example word /ika/. However, when used in a sentence, a
word has usually one meaning. This meaning is constrained by

3The Japanese WordNet misses a third basic meaning: ’A squid (animal)’.

Fig. 1. Computation of the semantic similarity between the two synsets for
the same words /ika/: ‘kite’ and ‘cooked squid’. The figure shows the two
synsets and their paths to the top of the hierarchy in WordNet. The least
common concept is in noted as physical entity. The value of the similarity is
2 × length(path3)/ (length(path1) + length(path2)).

the other words in the sentence. The disambiguation process
relies on the fact that the other words in the sentence are
closer to one of the synsets the ambiguous word belong to.
This synset is naturally preferred for the interpretation of this
word in the sentence and thus becomes the meaning of this
word in the sentence. To simulate this disambiguation process,
we thus compute the similarity of each word of a sentence
with the ambiguous word. The intuition would be that the
average of the similarities of each word in the sentence with
the ambiguous word would lead better disambiguation. Our
experiments showed that taking the max over the words in the
sentence delivers better results.

Let a word w belong to the synset s, and let this word
appear in a sentence S. We define the semantic value of the
synset s for the w in the sentence S in the following way:
sem val(s, S) =

max
sj/wi∈sj∧wi∈S\{w}

word sim(s, wi)

This is applied to disambiguate a word w with several synsets
si by taking the synset which exhibits the highest semantic
value. In other words, the meaning s (a synset) of an ambigu-
ous word w in a sentence S is defined as:

s = arg max
si/w∈si

sem val(si, S)

To illustrate with an example, let us see the result obtained
for the sentence: we raise a /ika/ in the park.

We raise an /ika/ in the park
‘kite’ 0.00 - - - - - 0.56
‘cooked squid’ 0.00 - - - - - 0.22

In the general case, several synsets may get the same max
value, so that arg max may be a set with several elements,
which is a case of ambiguity. On the following sentences that
all contain the word /ika/, the previous definition leads to the
results shown on the right column of the following table. These

where POS is part of speech. In the absolute, a term is
ambiguous if it belongs to several synsets. This is the case of
our example word /ika/. However, when used in a sentence, a
word has usually one meaning. This meaning is constrained by
the other words in the sentence. The disambiguation process
relies on the fact that the other words in the sentence are closer
to one of the synsets the ambiguous word belongs to. This
synset is naturally preferred for the interpretation of this word
in the sentence and thus becomes the meaning of this word in
the sentence. To simulate this disambiguation process, we thus
compute the similarity of each word of a sentence with the
ambiguous word. The intuition would be that the average of
the similarities of each word in the sentence with the
ambiguous word would lead better disambiguation. Our
experiments showed that taking the max over the words in the
sentence delivers better results.
 Let a word w belong to the synset s, and let this word appear
in a sentence S. We define the semantic value of the synset for
the w in the sentence S in the following way:

!

sem_val(s,S) =

!

s j /wi "s j #wi "S${w}
max word _ sim(s,wi)

This is applied to disambiguate a word w with several synsets
si by taking the synset which exhibits the highest semantic
value. In other words, the meaning s (a synset) of an
ambiguous word w in a sentence S is defined as:

!

s = argmaxsi /w"si sem _val(si,S)

To illustrate with an example, let us see the result obtained for
the sentence: we raise a /ika/ in the park.

..Top

.LCS

.1

.s1 .

.1

.s2 .

.20

.19

.1

.18

.20

.19

.1

.18

Fig. 1. Computation of the semantic similarity between the two synsets for
the same words /ika/: ‘kite’ and ‘cooked squid’. The figure shows the two
synsets and their paths to the top of the hierarchy in WordNet. The least
common concept is in noted as physical entity. The value of the similarity is
2 × length(path3)/ (length(path1) + length(path2)).

a word with more than two different meanings, will thus
belong to two different synsets. For instance, the word /ika/
in Japanese is ambiguous, as it can be found in two different
synsets in the Japanese WordNet. The two meanings are: ’a
toy consisting of a light frame covered with tissue paper, a
kite’ and ’cooked squid’3. In the context of a sentence, it is
usually possible to decide the meaning of ’ika’ from the other
words in the sentence:

Sentence Meaning
‘kite’ ‘cooked squid’

We raise an /ika/ on the hill. yes no
We fry an /ika/ in oil. no yes

Links between synsets describe different semantic relations
like holonymy/meronymy (whole/part), antonymy, etc. In par-
ticular, the relationships of hypernymy/hyponymy define a
hierarchical structure between syntsets. The hierarchy has a
top node (concept), and thus allows for the computation of
semantic similarity.

B. Semantic similarity in WordNet

As the hypernymy/hyponymy hierarchy of WordNet has a
top node (concept), any two synsets can be assigned a semantic
similarity measure using the hypernym/hyponymy hierarchy.
For any synset s, the length of the path from the top of the
hierarchy to the synset is noted as depth(s). Now, for two
synsets s1 and s2, it is possible to find their lowest common
synset by going up towards the top of the hierarchy; this synset
is denoted as lcs(s1, s2). The semantic similarity of s1 and s2

is defined using the common node (concept) of the paths of
the two synsets to the top of the hierarchy. Using a formula à
la Dice coefficient, one defines:

wup similarity(s1, s2) =
2 × depth(lcs(s1, s2))
depth(s1) + depth(s2)

(1)

The Wu and Palmer [9] similarity metric measures the depth
of two given concepts (synsets) in the WordNet taxonomy.
There are other similarity metric measures in WordNet. ex.
Lin similarity [10], Lesk similarity [11]and so on.

3The Japanese WordNet misses a third basic meaning: ’A squid (animal)’.

As a word may belong to several synsets, the semantic sim-
ilarity between two words is defined as the smallest similarity
between all the possible synsets the two words at hand belong
to. In addition, equality of part of speech is required.

word sim(w1, w2) = max
(si,sj)

wup similarity(si, sj)

this maximum being taken over all (si, sj) such that:

w1 ∈ si ∧ w2 ∈ sj ∧ POS(w1) = POS(w2)

where POS is part of speech. In the absolute, a term is
ambiguous if it belongs to several synsets. This is the case of
our example word /ika/. However, when used in a sentence, a
word has usually one meaning. This meaning is constrained by
the other words in the sentence. The disambiguation process
relies on the fact that the other words in the sentence are
closer to one of the synsets the ambiguous word belong to.
This synset is naturally preferred for the interpretation of this
word in the sentence and thus becomes the meaning of this
word in the sentence. To simulate this disambiguation process,
we thus compute the similarity of each word of a sentence
with the ambiguous word. The intuition would be that the
average of the similarities of each word in the sentence with
the ambiguous word would lead better disambiguation. Our
experiments showed that taking the max over the words in the
sentence delivers better results.

Let a word w belong to the synset s, and let this word
appear in a sentence S. We define the semantic value of the
synset s for the w in the sentence S in the following way:
sem val(s, S) =

max
sj/wi∈sj∧wi∈S\{w}

word sim(s, wi)

This is applied to disambiguate a word w with several synsets
si by taking the synset which exhibits the highest semantic
value. In other words, the meaning s (a synset) of an ambigu-
ous word w in a sentence S is defined as:

s = arg max
si/w∈si

sem val(si, S)

To illustrate with an example, let us see the result obtained
for the sentence: we raise a /ika/ in the park.

We raise an /ika/ in the park
‘kite’ 0.00 - - - - - 0.56
‘cooked squid’ 0.00 - - - - - 0.22

In the general case, several synsets may get the same max
value, so that arg max may be a set with several elements,
which is a case of ambiguity. On the following sentences that
all contain the word /ika/, the previous definition leads to the
results shown on the right column of the following table. These
results clearly show that disambiguation is performed rightly
in the obvious cases, while the word /ika/ remains ambiguous
in more subtle cases, meeting human intuition.

3 The Japanese WordNet misses a third basic meaning: ’A squid (animal)’.

 In the general case, several synsets may get the same max
value, so that argmax may be a set with several elements,
which is a case of ambiguity. On the following sentences that
all contain the word /ika/, the previous definition leads to the
results shown on the right column of the following table.
These results clearly show that disambiguation is performed
rightly in the obvious cases, while the word /ika/ remains
ambiguous in more subtle cases, meeting human intuition.

Sentences Computed meaning
We raise an /ika/ in the park. {‘kite’}
We raise an /ika/ on the hill. {‘kite’,‘cooked squid’}
We fry an /ika/ in oil. {‘cooked squid’}
The diner is an /ika/. {‘cooked squid’}
We boil an /ika/ in water. {‘kite’, ‘cooked squid’}
We eat an /ika/. {‘kite’, ‘cooked squid’}

This shows that the context of only one sentence is not
enough to disambiguate a term in many cases. The details
for the computation on the second sentence are given in the
following table.

We raise an /ika/ on the hill
‘kite’ 0.00 - - - - - 0.13
‘cooked squid’ 0.00 - - - - - 0.13

The previous results show that the sentence context only is
not enough to perform disambiguation, and that, although
two sentences may look very similar, disambiguation can be
performed in one case (sentence with park), whilst not in the
other case (sentence with hill).

C. Sentences clustering by semantic meanings

The previous results can be interpreted as a clustering pro-
cess by which the sentences are clustered in clusters according
to the set of meanings (synsets) taken by the ambiguous word.

Cluster Sentences
{‘kite’} We raise an /ika/ in the park.

{‘cooked squid’} We fry an /ika/ in oil.
The diner is an /ika/

{‘kite’,‘cooked squid’}
We raise an /ika/ on the hill.
We boil an /ika/ in water.
We eat an /ika/.

The process of clustering can be carried on by exploiting
these clusters. As in partitional clustering, sentences where the
term remains ambiguous can be checked for their similarity
to each unambiguous cluster. If the similarity to a cluster is
found to be enough large, the meaning of the term in the
ambiguous sentence can be considered the one in the non-
ambiguous cluster, thus leading to disambiguation. In the case
no reliable similarity can be computed, disambiguation cannot
be performed.

D. Semantic similarity between sentences

In order to evaluate the similarity between two sentences
T1 and T2, we use the two possible directional semantic
alignments between them. A directional alignment gives the
best corresponding word in the second sentence for each word
of a first sentence.

w
e

bo
il

an /ik
a/

in w
at

er

we 1.0 - - - - -
raise - - - - - -

an - - 1.0 - - -
/ika/ 0.0 - - 1.0 - 0.7

on - - - - - -
the - - - - - -
hill 0.0 - - 0.1 - 0.5

The sum of the best semantic similarities over all words of
one sentence partly reflects the semantic similarity between
both sentence. Notice that this similarity is not symmetrical
as the number of words in the two sentences may be different.
For this reason, we average over both directions.

In order to reflect the importance of words, i.e., to give more
weight to words that are characteristic of the sentences over
the words which are very frequent in a language, we give a
weight to each word by using the idf measure ordinarily used
in document retrieval [15]. This is similar to what is done in
[13], [14].

To summarize, we propose to compute the similarity be-
tween two sentences S1 and S2 according to the following
formulae:

sent sim(S1, S2) =
1
2
× (sem div(S1, S2) + sem div(S2, S1))

sent div(S1, S2) =
∑

wi∈S1

(
maxwj∈S2

word sim(wi, wj) × idf(wi)
)

∑

wi∈S1

idf(wi)

idf(w) = − log
|{S ∈ D/w ∈ S}|

|D|

where D is the document and |D| is the number of sentences
in the document. The similarity is a kind of knowledge-
based method for measuring the semantic similarity between
sentences.

E. Partitional clustering of sentences

To be incorporated in a cluster, the similarity of the sentence
to the cluster should be enough large, Based on the results
of exepriments, we fixed a threshold of 0.7 for this. That is,
source sentence is semantically equivalent to target sentence.

With the previous sentence similarity and the threshold
mentioned above, our example sentences are now clustered
in the following way:

 This shows that the context of only one sentence is not
enough to disambiguate a term in many cases. The details for
the computation on the second sentence are given in the
following table.

Sentences Computed meaning
We raise an /ika/ in the park. {‘kite’}
We raise an /ika/ on the hill. {‘kite’,‘cooked squid’}
We fry an /ika/ in oil. {‘cooked squid’}
The diner is an /ika/. {‘cooked squid’}
We boil an /ika/ in water. {‘kite’, ‘cooked squid’}
We eat an /ika/. {‘kite’, ‘cooked squid’}

This shows that the context of only one sentence is not
enough to disambiguate a term in many cases. The details
for the computation on the second sentence are given in the
following table.

We raise an /ika/ on the hill
‘kite’ 0.00 - - - - - 0.13
‘cooked squid’ 0.00 - - - - - 0.13

The previous results show that the sentence context only is
not enough to perform disambiguation, and that, although
two sentences may look very similar, disambiguation can be
performed in one case (sentence with park), whilst not in the
other case (sentence with hill).

C. Sentences clustering by semantic meanings

The previous results can be interpreted as a clustering pro-
cess by which the sentences are clustered in clusters according
to the set of meanings (synsets) taken by the ambiguous word.

Cluster Sentences
{‘kite’} We raise an /ika/ in the park.

{‘cooked squid’} We fry an /ika/ in oil.
The diner is an /ika/

{‘kite’,‘cooked squid’}
We raise an /ika/ on the hill.
We boil an /ika/ in water.
We eat an /ika/.

The process of clustering can be carried on by exploiting
these clusters. As in partitional clustering, sentences where the
term remains ambiguous can be checked for their similarity
to each unambiguous cluster. If the similarity to a cluster is
found to be enough large, the meaning of the term in the
ambiguous sentence can be considered the one in the non-
ambiguous cluster, thus leading to disambiguation. In the case
no reliable similarity can be computed, disambiguation cannot
be performed.

D. Semantic similarity between sentences

In order to evaluate the similarity between two sentences
T1 and T2, we use the two possible directional semantic
alignments between them. A directional alignment gives the
best corresponding word in the second sentence for each word
of a first sentence.

w
e

bo
il

an /ik
a/

in w
at

er

we 1.0 - - - - -
raise - - - - - -

an - - 1.0 - - -
/ika/ 0.0 - - 1.0 - 0.7

on - - - - - -
the - - - - - -
hill 0.0 - - 0.1 - 0.5

The sum of the best semantic similarities over all words of
one sentence partly reflects the semantic similarity between
both sentence. Notice that this similarity is not symmetrical
as the number of words in the two sentences may be different.
For this reason, we average over both directions.

In order to reflect the importance of words, i.e., to give more
weight to words that are characteristic of the sentences over
the words which are very frequent in a language, we give a
weight to each word by using the idf measure ordinarily used
in document retrieval [15]. This is similar to what is done in
[13], [14].

To summarize, we propose to compute the similarity be-
tween two sentences S1 and S2 according to the following
formulae:

sent sim(S1, S2) =
1
2
× (sem div(S1, S2) + sem div(S2, S1))

sent div(S1, S2) =
∑

wi∈S1

(
maxwj∈S2

word sim(wi, wj) × idf(wi)
)

∑

wi∈S1

idf(wi)

idf(w) = − log
|{S ∈ D/w ∈ S}|

|D|

where D is the document and |D| is the number of sentences
in the document. The similarity is a kind of knowledge-
based method for measuring the semantic similarity between
sentences.

E. Partitional clustering of sentences

To be incorporated in a cluster, the similarity of the sentence
to the cluster should be enough large, Based on the results
of exepriments, we fixed a threshold of 0.7 for this. That is,
source sentence is semantically equivalent to target sentence.

With the previous sentence similarity and the threshold
mentioned above, our example sentences are now clustered
in the following way:

 The previous results show that the sentence context only is
not enough to perform disambiguation, and that, although two
sentences may look very similar, disambiguation can be
performed in one case (sentence with park), whilst not in the
other case (sentence with hill).

C. Sentences clustering by semantic meanings
 The previous results can be interpreted as a clustering process
by which the sentences are clustered in clusters according to
the set of meanings (synsets) taken by the ambiguous word.

Sentences Computed meaning
We raise an /ika/ in the park. {‘kite’}
We raise an /ika/ on the hill. {‘kite’,‘cooked squid’}
We fry an /ika/ in oil. {‘cooked squid’}
The diner is an /ika/. {‘cooked squid’}
We boil an /ika/ in water. {‘kite’, ‘cooked squid’}
We eat an /ika/. {‘kite’, ‘cooked squid’}

This shows that the context of only one sentence is not
enough to disambiguate a term in many cases. The details
for the computation on the second sentence are given in the
following table.

We raise an /ika/ on the hill
‘kite’ 0.00 - - - - - 0.13
‘cooked squid’ 0.00 - - - - - 0.13

The previous results show that the sentence context only is
not enough to perform disambiguation, and that, although
two sentences may look very similar, disambiguation can be
performed in one case (sentence with park), whilst not in the
other case (sentence with hill).

C. Sentences clustering by semantic meanings

The previous results can be interpreted as a clustering pro-
cess by which the sentences are clustered in clusters according
to the set of meanings (synsets) taken by the ambiguous word.

Cluster Sentences
{‘kite’} We raise an /ika/ in the park.

{‘cooked squid’} We fry an /ika/ in oil.
The diner is an /ika/

{‘kite’,‘cooked squid’}
We raise an /ika/ on the hill.
We boil an /ika/ in water.
We eat an /ika/.

The process of clustering can be carried on by exploiting
these clusters. As in partitional clustering, sentences where the
term remains ambiguous can be checked for their similarity
to each unambiguous cluster. If the similarity to a cluster is
found to be enough large, the meaning of the term in the
ambiguous sentence can be considered the one in the non-
ambiguous cluster, thus leading to disambiguation. In the case
no reliable similarity can be computed, disambiguation cannot
be performed.

D. Semantic similarity between sentences

In order to evaluate the similarity between two sentences
T1 and T2, we use the two possible directional semantic
alignments between them. A directional alignment gives the
best corresponding word in the second sentence for each word
of a first sentence.

w
e

bo
il

an /ik
a/

in w
at

er

we 1.0 - - - - -
raise - - - - - -

an - - 1.0 - - -
/ika/ 0.0 - - 1.0 - 0.7

on - - - - - -
the - - - - - -
hill 0.0 - - 0.1 - 0.5

The sum of the best semantic similarities over all words of
one sentence partly reflects the semantic similarity between
both sentence. Notice that this similarity is not symmetrical
as the number of words in the two sentences may be different.
For this reason, we average over both directions.

In order to reflect the importance of words, i.e., to give more
weight to words that are characteristic of the sentences over
the words which are very frequent in a language, we give a
weight to each word by using the idf measure ordinarily used
in document retrieval [15]. This is similar to what is done in
[13], [14].

To summarize, we propose to compute the similarity be-
tween two sentences S1 and S2 according to the following
formulae:

sent sim(S1, S2) =
1
2
× (sem div(S1, S2) + sem div(S2, S1))

sent div(S1, S2) =
∑

wi∈S1

(
maxwj∈S2

word sim(wi, wj) × idf(wi)
)

∑

wi∈S1

idf(wi)

idf(w) = − log
|{S ∈ D/w ∈ S}|

|D|

where D is the document and |D| is the number of sentences
in the document. The similarity is a kind of knowledge-
based method for measuring the semantic similarity between
sentences.

E. Partitional clustering of sentences

To be incorporated in a cluster, the similarity of the sentence
to the cluster should be enough large, Based on the results
of exepriments, we fixed a threshold of 0.7 for this. That is,
source sentence is semantically equivalent to target sentence.

With the previous sentence similarity and the threshold
mentioned above, our example sentences are now clustered
in the following way:

 The process of clustering can be carried on by exploiting
these clusters. As in partitional clustering, sentences where the
term remains ambiguous can be checked for their similarity to
each unambiguous cluster. If the similarity to a cluster is found
to be enough large, the meaning of the term in the ambiguous
sentence can be considered the one in the non-ambiguous
cluster, thus leading to disambiguation. In the case no reliable
similarity can be computed, disambiguation cannot be
performed.

D. Semantic similarity between sentences
 In order to evaluate the similarity between two sentences S1
and S2, we use the two possible directional semantic alignments
between them. A directional alignment gives the best
corresponding word in the second sentence for each word of a
first sentence.

Sentences Computed meaning
We raise an /ika/ in the park. {‘kite’}
We raise an /ika/ on the hill. {‘kite’,‘cooked squid’}
We fry an /ika/ in oil. {‘cooked squid’}
The diner is an /ika/. {‘cooked squid’}
We boil an /ika/ in water. {‘kite’, ‘cooked squid’}
We eat an /ika/. {‘kite’, ‘cooked squid’}

This shows that the context of only one sentence is not
enough to disambiguate a term in many cases. The details
for the computation on the second sentence are given in the
following table.

We raise an /ika/ on the hill
‘kite’ 0.00 - - - - - 0.13
‘cooked squid’ 0.00 - - - - - 0.13

The previous results show that the sentence context only is
not enough to perform disambiguation, and that, although
two sentences may look very similar, disambiguation can be
performed in one case (sentence with park), whilst not in the
other case (sentence with hill).

C. Sentences clustering by semantic meanings

The previous results can be interpreted as a clustering pro-
cess by which the sentences are clustered in clusters according
to the set of meanings (synsets) taken by the ambiguous word.

Cluster Sentences
{‘kite’} We raise an /ika/ in the park.

{‘cooked squid’} We fry an /ika/ in oil.
The diner is an /ika/

{‘kite’,‘cooked squid’}
We raise an /ika/ on the hill.
We boil an /ika/ in water.
We eat an /ika/.

The process of clustering can be carried on by exploiting
these clusters. As in partitional clustering, sentences where the
term remains ambiguous can be checked for their similarity
to each unambiguous cluster. If the similarity to a cluster is
found to be enough large, the meaning of the term in the
ambiguous sentence can be considered the one in the non-
ambiguous cluster, thus leading to disambiguation. In the case
no reliable similarity can be computed, disambiguation cannot
be performed.

D. Semantic similarity between sentences

In order to evaluate the similarity between two sentences
T1 and T2, we use the two possible directional semantic
alignments between them. A directional alignment gives the
best corresponding word in the second sentence for each word
of a first sentence.

we bo
il

an /ik
a/

in wa
ter

we 1.0 - - - - -
raise - - - - - -

an - - 1.0 - - -
/ika/ 0.0 - - 1.0 - 0.7

on - - - - - -
the - - - - - -
hill 0.0 - - 0.1 - 0.5

The sum of the best semantic similarities over all words of
one sentence partly reflects the semantic similarity between
both sentence. Notice that this similarity is not symmetrical
as the number of words in the two sentences may be different.
For this reason, we average over both directions.

In order to reflect the importance of words, i.e., to give more
weight to words that are characteristic of the sentences over
the words which are very frequent in a language, we give a
weight to each word by using the idf measure ordinarily used
in document retrieval [15]. This is similar to what is done in
[13], [14].

To summarize, we propose to compute the similarity be-
tween two sentences S1 and S2 according to the following
formulae:

sent sim(S1, S2) =
1
2
× (sem div(S1, S2) + sem div(S2, S1))

sent div(S1, S2) =
∑

wi∈S1

(
maxwj∈S2

word sim(wi, wj) × idf(wi)
)

∑

wi∈S1

idf(wi)

idf(w) = − log
|{S ∈ D/w ∈ S}|

|D|

where D is the document and |D| is the number of sentences
in the document. The similarity is a kind of knowledge-
based method for measuring the semantic similarity between
sentences.

E. Partitional clustering of sentences

To be incorporated in a cluster, the similarity of the sentence
to the cluster should be enough large, Based on the results
of exepriments, we fixed a threshold of 0.7 for this. That is,
source sentence is semantically equivalent to target sentence.

With the previous sentence similarity and the threshold
mentioned above, our example sentences are now clustered
in the following way:

The sum of the best semantic similarities over all words of

one sentence partly reflects the semantic similarity between
both sentences. Notice that this similarity is not symmetrical as
the number of words in the two sentences may be different. For
this reason, we average over both directions.

In order to reflect the importance of words, i.e., to give
more weight to words that are characteristic of the sentences
over the words which are very frequent in a language, we give
a weight to each word by using the idf measure ordinarily used
in document retrieval [15]. This is similar to what is done in
[13], [14].

To summarize, we propose to compute the similarity
between two sentences S1 and S2 according to the following
formulae:

!

sent _ sim(S1,S2) =

!

1
2
" (sem _ div(S1,S2) + sem _ div(S2,S1))

!

sent _ div(S1,S2) =

!

(maxw j "S2
word _ sim(wi,w j) # idf (wi)

wi "S1

$)

idf (wi)wi "S1
$

!

idf (w) = "log | S # D /w # S |
|D |

where D is the document and |D| is the number of sentences in
the document.

E. Partitional clustering of sentences
 To be incorporated in a cluster, the similarity of the sentence
to the cluster should be enough large, based on the results of
experiments, we fixed a threshold of 0.7 for this.
 With the previous sentence similarity and the threshold
mentioned above, our example sentences are now clustered in
the following way:

 The Japanese WordNet misses a third basic meaning: ’A squid (animal)’.

Cluster Sentences

{‘kite’}
We raise an /ika/ in the park.
We raise an /ika/ on the hill.
We boil an /ika/ in water.

{‘cooked squid’} We fry an /ika/ in oil.
The diner is an /ika/.

{‘kite’,‘cooked squid’} We eat an /ika/.

As a result, one sentence only remains where the word /ika/
is still ambiguous. For other sentences, the word is seemingly
not ambiguous.

This kind of configuration is not desired for SRS. Indeed,
the opposite extreme case is searched for a term used in a SRS:
all sentences should use the term in the same unique meaning.
In the next section, we turn to the problem of spotting the word
for which ambiguity should be checked.

F. Terms detection
According to IEEE std 830, the words for which ambiguity

should be checked are those words that are relevant for the
requirements at hand, i.e., technical terms. To extract technical
terms or compound terms from technical documents (among
which, SRS), a method called C-value method has been
introduced in [12]. The C-value of a term is computed as
follows:

C-value(a) =





log2 |a|×

(
f(a) − 1

|T (a)|
∑

b∈T (a)

f(b)

)

log2 |a|× f(a) if T (a) = ∅
(2)

where a is a candidate term, |a| its lengths in words and f(a)
its frequency. T (a) represents the set of candidate terms that
contain a and |Ta| stands the cardinal of this set, i.e., the
number of other candidate terms containing a. The second
line of the definition gives the formula for terms that are not
included in any other candidate term and candidate term b is
contained in a. we show a example how to compute C-value
as follow table:

candidate term (a) meaning |a| f(a)
∑

b∈T (a)

f(b){f(b) : a ⊂ b} |T (a)|

/syoumei souti/ ’lighting device’ 2 10 5 + 4 = 9 2
/syoumei souti sisutemu/ ’lighting device system ’ 3 5 - ∅
/shoumei souti setuden sisutemu/ ’lighting device saving system’ 4 4 - ∅

The method, combines linguistic and statistical information.
And the method enhances the common statistical measure
of frequency of occurrence for term extraction, making it
sensitive to a particular type of multi-terms, the nested terms.

For each term extracted by C-value method computation,
we check for its presence in the WordNet semantic network.
It a term is not found, we decide that each of its word becomes
a term to check for ambiguity.

III. OVERVIEW OF THE DISAMBIGUATION METHOD

To summarize in an formalized way, the different steps
of our method can be described as follows. Let T be the

text we want to check for ambiguous use of terms (a SRS
text in our experiment below). T is considered as a set of
sentences. Each sentence is considered as a set of words. Let
w be a candidate term in this text selected by use of C-value
computation. In a first step, we gather the set of all meanings
from WordNet for the word at hand, w. In a second step, we
assign the set of possible meanings of w in S to each sentence
S using the semantic value function define in Subsection II-B.
In a third step, we reassign the set of meanings of w in S
by use of partitioning clustering as described in Section II-E
that is, we enforce disambiguation when possible. To do this,
we use the semantic similarity between sentences defined
in Subsection II-D. The final step consists in clustering the
sentences by sets of meaning.

Σ = {σ ∈ WordNet/w ∈ σ} // all meanings of w
S = {s ∈ T/ w ∈ s} // all sentences containing w
for s ∈ S do

m(s) = {σ ∈ Σ/σ = sem val(w, s)}
end for
for s ∈ S such that |m(s)| > 1 do

s′′ = argmaxs′∈Ssent div(s, s′)
if sent sim(s, s′′) > θ and m(s′′) is a singleton then

m(s) = m(s′)
end if

end for
partition S according to the values of m

IV. EXPERIMENT AND RESULTS

We performed an experiment on an actual SRS text, in the
Japanese language, in order to evaluate the possibilities of our
proposed method of disambiguation.

A. Experimental Data and Processing Chain

The SRS relates to an ’Interior Lighting Power Saving
System’. This file was delivered to us in Word format. A
processing chain consisting of the following steps was used
to process the text:

• extract plain text from Word format (by use of antiword4);
• separate into paragraphs and sentences (by use of in-

house software);
• apply Japanese word segmentation to each sentence (by

use of JUMAN5);
• collect terms (by use of in-house implementation of C-

value computation) and possibly split compound term
into single word term (after checking for presence in
WordNet);

• for each term, for each sentence which contains the term,
check whether the term is ambiguous in this sentence;

• perform clustering of sentences by sets of meanings;

4http://www.winfield.demon.nl/
5http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN

 As a result, one sentence only remains where the word /ika/
is still ambiguous. For other sentences, the word is seemingly
not ambiguous.
 This kind of configuration is not desired for SRS. Indeed,
the opposite extreme case is searched for a term used in a
SRS: all sentences should use the term in the same unique
meaning. In the next section, we turn to the problem of
spotting the word for which ambiguity should be checked.

F. Terms detection
According to IEEE std 830, the words for which ambiguity

should be checked are those words that are relevant for the
requirements at hand, i.e., technical terms. To extract technical
terms or compound terms from technical documents (among
which, SRS), a method called C-value method has been
introduced in [12]. The C-value of a term is computed as
follows:

!

C " value(a) =
log2 | a |#(f (a) " 1

|T(a) |
f (b)

b$T (a)
%)

log2 | a |# f (a) if T(a) = &

'

(
)

*)

+

,
)

-)

where a is a candidate term, |a| its lengths in words and f(a)
its frequency. T(a) represents the set of candidate terms that
contain a and |T(a)| stands the cardinal of this set, i.e., the
number of other candidate terms containing a. The second line
of the definition gives the formula for terms that are not
included in any other candidate term and candidate term b is
contained in a.

The method combines linguistic and statistical information.
And the method enhances the common statistical measure of
frequency of occurrence for term extraction, making it sensitive
to a particular type of multi-terms, the nested terms.

 For each term extracted by C-value method computation,
we check for its presence in the WordNet semantic network.
It a term is not found, we decide that each of its word becomes
a term to check for ambiguity.

 Ⅲ. OVERVIEW OF THE DISAMBIGUATION METHOD
To summarize in a formalized way, the different steps of

our method can be described as follows. Let T be the text we
want to check for ambiguous use of terms (a SRS text in our
experiment below). T is considered as a set of sentences. Each
sentence is considered as a set of words. Let w be a
candidate term in this text selected by use of C-value
computation. In a first step, we gather the set of all meanings

from WordNet for the word at hand, w. In a second step, we
assign the set of possible meanings of w in S to each sentence S
using the semantic value function define in Subsection Ⅱ-B. In
a third step, we reassign the set of meanings of w in S by use of
partitioning clustering as described in Section Ⅱ-E that is, we
enforce disambiguation when possible. To do this, we use the
semantic similarity between sentences defined in Subsection Ⅱ
-D. The final step consists in clustering the sentences by sets of
meaning.

Cluster Sentences

{‘kite’}
We raise an /ika/ in the park.
We raise an /ika/ on the hill.
We boil an /ika/ in water.

{‘cooked squid’} We fry an /ika/ in oil.
The diner is an /ika/.

{‘kite’,‘cooked squid’} We eat an /ika/.

As a result, one sentence only remains where the word /ika/
is still ambiguous. For other sentences, the word is seemingly
not ambiguous.

This kind of configuration is not desired for SRS. Indeed,
the opposite extreme case is searched for a term used in a SRS:
all sentences should use the term in the same unique meaning.
In the next section, we turn to the problem of spotting the word
for which ambiguity should be checked.

F. Terms detection
According to IEEE std 830, the words for which ambiguity

should be checked are those words that are relevant for the
requirements at hand, i.e., technical terms. To extract technical
terms or compound terms from technical documents (among
which, SRS), a method called C-value method has been
introduced in [12]. The C-value of a term is computed as
follows:

C-value(a) =





log2 |a|×

(
f(a) − 1

|T (a)|
∑

b∈T (a)

f(b)

)

log2 |a|× f(a) if T (a) = ∅
(2)

where a is a candidate term, |a| its lengths in words and f(a)
its frequency. T (a) represents the set of candidate terms that
contain a and |Ta| stands the cardinal of this set, i.e., the
number of other candidate terms containing a. The second
line of the definition gives the formula for terms that are not
included in any other candidate term and candidate term b is
contained in a. we show a example how to compute C-value
as follow table:

candidate term (a) meaning |a| f(a)
∑

b∈T (a)

f(b){f(b) : a ⊂ b} |T (a)|

/syoumei souti/ ’lighting device’ 2 10 5 + 4 = 9 2
/syoumei souti sisutemu/ ’lighting device system ’ 3 5 - ∅
/shoumei souti setuden sisutemu/ ’lighting device saving system’ 4 4 - ∅

The method, combines linguistic and statistical information.
And the method enhances the common statistical measure
of frequency of occurrence for term extraction, making it
sensitive to a particular type of multi-terms, the nested terms.

For each term extracted by C-value method computation,
we check for its presence in the WordNet semantic network.
It a term is not found, we decide that each of its word becomes
a term to check for ambiguity.

III. OVERVIEW OF THE DISAMBIGUATION METHOD

To summarize in an formalized way, the different steps
of our method can be described as follows. Let T be the

text we want to check for ambiguous use of terms (a SRS
text in our experiment below). T is considered as a set of
sentences. Each sentence is considered as a set of words. Let
w be a candidate term in this text selected by use of C-value
computation. In a first step, we gather the set of all meanings
from WordNet for the word at hand, w. In a second step, we
assign the set of possible meanings of w in S to each sentence
S using the semantic value function define in Subsection II-B.
In a third step, we reassign the set of meanings of w in S
by use of partitioning clustering as described in Section II-E
that is, we enforce disambiguation when possible. To do this,
we use the semantic similarity between sentences defined
in Subsection II-D. The final step consists in clustering the
sentences by sets of meaning.

Σ = {σ ∈ WordNet/w ∈ σ} // all meanings of w
S = {s ∈ T/ w ∈ s} // all sentences containing w
for s ∈ S do

m(s) = {σ ∈ Σ/σ = sem val(w, s)}
end for
for s ∈ S such that |m(s)| > 1 do

s′′ = argmaxs′∈Ssent div(s, s′)
if sent sim(s, s′′) > θ and m(s′′) is a singleton then

m(s) = m(s′)
end if

end for
partition S according to the values of m

IV. EXPERIMENT AND RESULTS

We performed an experiment on an actual SRS text, in the
Japanese language, in order to evaluate the possibilities of our
proposed method of disambiguation.

A. Experimental Data and Processing Chain

The SRS relates to an ’Interior Lighting Power Saving
System’. This file was delivered to us in Word format. A
processing chain consisting of the following steps was used
to process the text:

• extract plain text from Word format (by use of antiword4);
• separate into paragraphs and sentences (by use of in-

house software);
• apply Japanese word segmentation to each sentence (by

use of JUMAN5);
• collect terms (by use of in-house implementation of C-

value computation) and possibly split compound term
into single word term (after checking for presence in
WordNet);

• for each term, for each sentence which contains the term,
check whether the term is ambiguous in this sentence;

• perform clustering of sentences by sets of meanings;

4http://www.winfield.demon.nl/
5http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN

Ⅳ. EXPERIMENT AND RESULTS
 We performed an experiment on an actual SRS text, in the
Japanese language, in order to evaluate the possibilities of our
proposed method of disambiguation.

A. Experimental Data and Processing Chain
 The SRS relates to an 'Interior Lighting Power Saving
System'. This file was delivered to us in Word format. A
processing chain consisting of the following steps was used to
process the text:

• extract plain text from Word format (by use of

antiword4);
• separate into paragraphs and sentences (by use of in-

house software);
• apply Japanese word segmentation to each sentence (by

use of JUMAN5);
• collect terms (by use of in-house implementation of C-

value computation) and possibly split compound term
into single word term (after checking for presence in
WordNet);

• for each term, for each sentence which contains the term,
check whether the term is ambiguous in this sentence;

• perform clustering of sentences by sets of meanings;
• for each term, report the term when more than one

meaning is detected in the text. In this case, report the
clusters and those signal sentences where the word is
still found ambiguous.

4 http://www.winfield.demon.nl/
5 http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN

 Many of the sentences in the text contain special characters.
Also, since this SRS describes technical details in physical
terms, there are many formulae. Our system automatically
eliminates formulae, tables and arrays by checking the
proportion of characters that do not belong to the standard
Japanese writing system (kanji, hiragana and katakana). The
number of remaining sentences was 1,177. The following table
shows statistics about the kind of characters found in the SRS
text used in our experiments:

TABLE I
TERMS EXTRACTED BY C-VALUE COMPUTATION (THE RIGHTMOST COLUMN INDICATES THE PRESENCE IN WORDNET)

Extracted term Meanings C-value in WordNet?
/syoumei souti/ ‘lighting device’ 86.1 yes
/nettowaaku seigyo souti/ ‘network control device’ 69.7 no
/nettowaaku seigyo souti musen mozyuuru/ ‘network control device radio module’ 30.2 no
/souti sisutemu parametaa houti messeeji/ ‘device system parameter alarm message’ 27.3 no
/souti sisutemu parametaa/ ‘device system parameter’ 26.9 no
/souti radio mozyuuru/ ‘device radio module’ 24.8 no
/souti touroku youkyuu message/ ‘device registration requirements message’ 18.7 no
/syoumei souti sistemu parametaa houti messeezi/ ‘lighting device system parameter alarm message’ 18.1 no
/syoumei souti sistemu parametaa/ ‘lighting device system parameter’ 16.7 no
/messeezi zentai/ ‘entire message’ 14.0 no

• for each term, for each sentence which contains the term,
check whether the term is ambiguous in this sentence;

• perform clustering of sentences by sets of meanings;
• for each term, report the term when more than one

meaning is detected in the text. In this case, report the
clusters and those signal sentences where the word is still
found ambiguous.

Many of the sentences in the text contain special characters.
Also, since this SRS describes technical details in physical
terms, there are many formulae. Our system automatically
eliminates formulae, tables and arrays by checking the propor-
tion of characters that do not belong to the standard Japanese
writing system (kanji, hiragana and katakana). The number
of remaining sentences was 1,177. We show all features of
document as following:

feature the number of feature
kanji 2832
hiragana 1458
katakana 2535
digit 950
alphabet 2759
comma 104
period 118
special character 4006
total 14762

The terms extracted by the system from these sentences, are
given in Table I. Obviously, very long terms are unlikely to
be found in WordNet. As a result, almost all the single words
entering in these compound terms were checked for ambiguity
by our system. This resulted in the 17 terms listed in Table II.

B. Results and Evaluation

The results of the experiment are reported in Table II. The
IEEE std 830 recommendation for SRS is that a term should
have only one meaning in an SRS. Here, this means one
cluster with only one meaning. On the 17 terms examined

automatically, there were 6 such IEEE std 830 compliant terms
(6/17 ! one third).

Two thirds of the terms can be signaled as non IEEE std 830
compliant. No cases of one cluster with several meanings was
observed. A particular case is the case of the term meaning
‘control’, used in 10 sentences that can be interpreted in 5
different separate ways according to our results (5 clusters of
only one meaning each). When inspecting the definition of
this word in WordNet and its different synsets, it was judged
difficult to make a clear separation between them.

For /syoumei souti/ ’lighting device’, the number of mean-
ings in WordNet is 1, the number of sentences is 48, adapted
clusters is 1.0 by our computer aided method and the number
of meanings per clusters is 10. That is, according to IEEE std
830, this term is no problem.

In all the remaining cases, each term was classified into
several clusters, each cluster being itself ambiguous (average
meaning per cluster > 1).

V. CONCLUSION

In this paper, we designed and tested a word sense disam-
biguation method that uses different techniques from Natural
Language Processing so as to automatically check the confor-
mity of software requirements specifications (SRS) to recom-
mandations contained in IEEE std 830. The techniques used
consist in distance similarity in WordNet, inverse document
frequency (idf) to measure the importance of words, and C-
value to extract technical terms. The method is supposed to
provide a human reader with signals on possibly ambiguous
terms.

In an experiment on an actual SRS, we showed that two
thirds of the terms used were judged ambiguous by the
proposed automatic method.

Finally, we propose our computer-aided method is adapted
to other language, ex Chinese or English. Since the method is
depend on WordNet data. And now we build the application
embedded our computer-aided method.

 The terms extracted by the system from these sentences, are
given in Table Ⅰ. Obviously, very long terms are unlikely to
be found in WordNet. As a result, almost all the single words
entering in these compound terms were checked for ambiguity
by our system. This resulted in the 17 terms listed in Table Ⅱ.

B. Results and Evaluation
 The results of the experiment are reported in Table Ⅱ. The
IEEE std 830 recommendation for SRS is that a term should
have only one meaning in an SRS. Here, this means one
cluster with only one meaning. On the 17 terms examined
automatically, there were 6 such IEEE std 830 compliant
terms (6/17 ≃ one third). For /syoumei souti/ 'lighting device',
the number of meanings in WordNet is 1, the number of
sentences is 48, adapted clusters is 1.0 by our computer aided
method and the number of meanings per clusters is 10. That is,
according to IEEE std 830, this term is no problem.
 Two thirds of the terms can be signaled as non IEEE std 830
compliant. No cases of one cluster with several meanings was
observed. A particular case is the case of the term meaning
`control', used in 10 sentences that can be interpreted in 5
different separate ways according to our results (5 clusters of
only one meaning each). When inspecting the definition of this

word in WordNet and its different synsets, it was judged
difficult to make a clear separation between them.
 In all the remaining cases, each term was classified into
several clusters, each cluster being itself ambiguous (average
meaning per cluster >1).

TABLE I
TERMS EXTRACTED BY C-VALUE COMPUTATION (THE RIGHTMOST COLUMN INDICATES THE PRESENCE IN WORDNET)

Extracted term Meanings C-value in WordNet?
/syoumei souti/ ‘lighting device’ 86.1 yes
/nettowaaku seigyo souti/ ‘network control device’ 69.7 no
/nettowaaku seigyo souti musen mozyuuru/ ‘network control device radio module’ 30.2 no
/souti sisutemu parametaa houti messeeji/ ‘device system parameter alarm message’ 27.3 no
/souti sisutemu parametaa/ ‘device system parameter’ 26.9 no
/souti radio mozyuuru/ ‘device radio module’ 24.8 no
/souti touroku youkyuu message/ ‘device registration requirements message’ 18.7 no
/syoumei souti sistemu parametaa houti messeezi/ ‘lighting device system parameter alarm message’ 18.1 no
/syoumei souti sistemu parametaa/ ‘lighting device system parameter’ 16.7 no
/messeezi zentai/ ‘entire message’ 14.0 no

• for each term, report the term when more than one
meaning is detected in the text. In this case, report the
clusters and those signal sentences where the word is still
found ambiguous.

Many of the sentences in the text contain special characters.
Also, since this SRS describes technical details in physical
terms, there are many formulae. Our system automatically
eliminates formulae, tables and arrays by checking the propor-
tion of characters that do not belong to the standard Japanese
writing system (kanji, hiragana and katakana). The number of
remaining sentences was 1,177.

The terms extracted by the system from these sentences, are
given in Table ??. Obviously, very long terms are unlikely to
be found in WordNet. As a result, almost all the single words
entering in these compound terms were checked for ambiguity
by our system. This resulted in the 17 terms listed in Table II.

feature the number of character
kanji 2832
hiragana 1458
katakana 2535
digit 950
alphabet 2759
comma 104
period 118
special character 4006
total 14762

B. Results and Evaluation
The results of the experiment are reported in Table II. The

IEEE std 830 recommendation for SRS is that a term should
have only one meaning in an SRS. Here, this means one
cluster with only one meaning. On the 17 terms examined
automatically, there were 6 such IEEE std 830 compliant terms
(6/17 ! one third).

Two thirds of the terms can be signaled as non IEEE std 830
compliant. No cases of one cluster with several meanings was
observed. A particular case is the case of the term meaning
‘control’, used in 10 sentences that can be interpreted in 5
different separate ways according to our results (5 clusters of

only one meaning each). When inspecting the definition of
this word in WordNet and its different synsets, it was judged
difficult to make a clear separation between them.

TABLE II
FINAL RESULT OF THE DISAMBIGUATION PROCESS FOR EACH TERM.

Term Translation m
ea

ni
ng

s
(=

sy
ns

et
s)

in
W

or
dN

et

#
of

se
nt

en
ce

s

#
of

cl
us

te
rs

#
of

m
ea

ni
ng

s
pe

r
cl

us
te

rs

IE
EE

83
0

co
m

pl
ia

nt

/syoumei souti/‘lighting device’ 1 48 1 1.0 ok
/nettowaaku/ ‘network’ 4 39 2 2.0 -
/seigyo/ ‘control’ 10 46 5 1.0 -
/souti/ ‘device’ 6 74 2 2.7 -
/musen/ ‘radio’ 4 40 1 1.0 ok
/mozyuuru/ ‘module’ 3 19 1 1.0 -
/sisutemu/ ‘system’ 8 23 2 1.5 -
/parametaa/ ‘parameter’ 4 16 3 1.3 -
/touroku/ ‘registration’ 4 10 1 1.0 ok
/youkyuu/ ‘requirements’ 20 22 4 1.3 -
/messeezi/ ‘message’ 4 42 2 2.0 -
/sistemu/ ‘system’ 8 27 4 1.3 -
/houti/ ‘alarm’ 2 14 1 1.0 ok
/syoumei/ ‘lighting’ 5 50 4 1.3 -
/zentai/ ‘entire’ 5 29 1 1.0 ok
/daata/ ‘data’ 3 12 1 1.0 ok
/seetei/ ‘establishment’ 9 24 4 2.5 -

For /syoumei souti/ ’lighting device’, the number of mean-
ings in WordNet is 1, the number of sentences is 48, adapted
clusters is 1.0 by our computer aided method and the number
of meanings per clusters is 10. That is, according to IEEE std
830, this term is no problem.

In all the remaining cases, each term was classified into

Ⅴ. CONCLUSION

 In this paper, we designed and tested a word sense
disambiguation method that uses different techniques from
Natural Language Processing so as to automatically check the
conformity of software requirements specifications (SRS) to
recommendations contained in IEEE std 830. The techniques
used consist in distance similarity in WordNet, inverse
document frequency (idf) to measure the importance of words,
and C-value to extract technical terms. The method is
supposed to provide a human reader with signals on possibly
ambiguous terms.

TABLE I
TERMS EXTRACTED BY C-VALUE COMPUTATION (THE RIGHTMOST COLUMN INDICATES THE PRESENCE IN WORDNET)

Extracted term Meanings C-value in WordNet?
/syoumei souti/ ‘lighting device’ 86.1 yes
/nettowaaku seigyo souti/ ‘network control device’ 69.7 no
/nettowaaku seigyo souti musen mozyuuru/ ‘network control device radio module’ 30.2 no
/souti sisutemu parametaa houti messeeji/ ‘device system parameter alarm message’ 27.3 no
/souti sisutemu parametaa/ ‘device system parameter’ 26.9 no
/souti radio mozyuuru/ ‘device radio module’ 24.8 no
/souti touroku youkyuu message/ ‘device registration requirements message’ 18.7 no
/syoumei souti sistemu parametaa houti messeezi/ ‘lighting device system parameter alarm message’ 18.1 no
/syoumei souti sistemu parametaa/ ‘lighting device system parameter’ 16.7 no
/messeezi zentai/ ‘entire message’ 14.0 no

• for each term, for each sentence which contains the term,
check whether the term is ambiguous in this sentence;

• perform clustering of sentences by sets of meanings;
• for each term, report the term when more than one

meaning is detected in the text. In this case, report the
clusters and those signal sentences where the word is still
found ambiguous.

Many of the sentences in the text contain special characters.
Also, since this SRS describes technical details in physical
terms, there are many formulae. Our system automatically
eliminates formulae, tables and arrays by checking the propor-
tion of characters that do not belong to the standard Japanese
writing system (kanji, hiragana and katakana). The number
of remaining sentences was 1,177. We show all features of
document as following:

feature the number of feature
kanji 2832
hiragana 1458
katakana 2535
digit 950
alphabet 2759
comma 104
period 118
special character 4006
total 14762

The terms extracted by the system from these sentences, are
given in Table I. Obviously, very long terms are unlikely to
be found in WordNet. As a result, almost all the single words
entering in these compound terms were checked for ambiguity
by our system. This resulted in the 17 terms listed in Table II.

B. Results and Evaluation

The results of the experiment are reported in Table II. The
IEEE std 830 recommendation for SRS is that a term should
have only one meaning in an SRS. Here, this means one
cluster with only one meaning. On the 17 terms examined

automatically, there were 6 such IEEE std 830 compliant terms
(6/17 ! one third).

Two thirds of the terms can be signaled as non IEEE std 830
compliant. No cases of one cluster with several meanings was
observed. A particular case is the case of the term meaning
‘control’, used in 10 sentences that can be interpreted in 5
different separate ways according to our results (5 clusters of
only one meaning each). When inspecting the definition of
this word in WordNet and its different synsets, it was judged
difficult to make a clear separation between them.

For /syoumei souti/ ’lighting device’, the number of mean-
ings in WordNet is 1, the number of sentences is 48, adapted
clusters is 1.0 by our computer aided method and the number
of meanings per clusters is 10. That is, according to IEEE std
830, this term is no problem.

In all the remaining cases, each term was classified into
several clusters, each cluster being itself ambiguous (average
meaning per cluster > 1).

V. CONCLUSION

In this paper, we designed and tested a word sense disam-
biguation method that uses different techniques from Natural
Language Processing so as to automatically check the confor-
mity of software requirements specifications (SRS) to recom-
mandations contained in IEEE std 830. The techniques used
consist in distance similarity in WordNet, inverse document
frequency (idf) to measure the importance of words, and C-
value to extract technical terms. The method is supposed to
provide a human reader with signals on possibly ambiguous
terms.

In an experiment on an actual SRS, we showed that two
thirds of the terms used were judged ambiguous by the
proposed automatic method.

Finally, we propose our computer-aided method is adapted
to other language, ex Chinese or English. Since the method is
depend on WordNet data. And now we build the application
embedded our computer-aided method.

 In an experiment on an actual SRS, we showed that two
thirds of the terms used were judged ambiguous by the
proposed automatic method.

REFERENCES

[1] Erik Kamsties, Daniel M. Berry, Barbara Paech, Detecting Ambiguities
in Requirements Documents Using Inspections, Proceedings of the First
Workshop on Inspection in Software Engineering WISE0, 2001.

[2] Hui Yang, Alistair Willis, Anne De Roeck, Bashar Nuseibeh, Automatic
Detection of Nocuous Coordination Ambiguities in Natural Language
Requirements, ASE'10, 2010.

[3] Daniel Jackson, Software Abstractions: Logic, Language, Analysis, The
MIT Press, 2006.

[4] Dumais, Susan T, Enhancing performance in latent semantic index-ing
(LSI) retrieval, Technical Re-port TM-ARH-017527, Bellcore,
Morristown, NJ,1990.

[5] Thomas Hofmann, Probabilistic Latent Semantic Indexing, Proceedings
of the Twenty Second Annual International SIGIR Conference on
Research and Development in Information Retrieval, 1990.

[6] David M. Blei, Andrew Y. Ng, Michael I. Jordan, Latent Dirichlet
Allocation, Journal of Machine Learning Research, 2003.

[7] Marine Carpuat, Dekai Wu, Improving Statistical Machine Translation
using Word Sense Disambiguation, Association for Computational
Lingusitics, 2007.

[8] Jason Adams, Word Sense Disambiguation and Machine Translation,
IJCNLP, 2005

[9] Wu and M. Palmer, Verb semantics and lexical selection, In Proceedings
of the 32nd Annual Meeting of the Association for Computational
Linguistics, 1994.

[10] D. Lin, An information theoretic definition of similarity, In Proceedings
of the 15th International Conference on Machine Learning, 1998.

[11] M.E. Lesk, Automatic sense disambiguation using machine readable
dictionaries: How to tell a pine cone from an ice cream cone, In
Proceedings of the SIGDOC Conference, 1986.

[12] Katerina Frantzi, Sophia Ananadou, Hideki Mima, Automatic
Recognition of Multi-Word Terms: the C-value/NC-value Method,
International Journal on Digital Libraries, 2000

[13] Courtney Corley and Rada Mihalcea, Measuring the Semantic Similarity
of Texts, EMSEE '05 Proceedings of the ACL Workshop on Empirical
Modeling of Semantic Equivalence and Entailment, 2009

[14] Thanh Ngoc Dao, Troy Simpson, Measuring Similarity between
sentences, http://googlecode.com, 2002

[15] G. Salton and M.McGill, Introduction to modern information retrieval,
McGraw-Hill New York, 1983.

