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Abstract. A neural network model to solve analogical equations bet-
ween strings of symbols is proposed. The method transforms the input
strings into two fixed size alignment matrices. The matrices act as the
input of the neural network which predicts two output matrices. Finally,
a string decoder transforms the predicted matrices into the final string
output. By design, the neural network is constrained by several charac-
teristics of analogy. The experimental results show a very fast learning
rate with a highest prediction accuracy of 95.68% while a baseline anal-
ogy solving algorithm gives 94.47% accuracy rate.

1 Introduction

We design a neural network model to solve analogical equations between strings
of symbols. A matrix representation is proposed which transforms the input
strings into a matrices. Re-sampling and filtering on the matrices are applied.
Next, the neural network design is introduced. We exploit characteristics of pro-
portional analogy between strings of symbols to introduce constraints on the
neural network. Finally, the output prediction matrices are decoded into the
final string output. Experiments are performed to evaluate the effects of con-
figurable parameters. The method is compared with an algorithm based on a
formal characterization of proportional analogy between strings of symbols [7].

This paper is organized as follows. Section 2 describes the background on
proportional analogy between strings of symbols and previous related works. In
Sect. 3, the proposed methods and neural network models are explained. Exper-
iments are detailed in Sect. 4. Section 5 shows the experiment results.

2 Background

Proportional analogy between sequences of symbols, being they phonemes or
characters is stated as the relationship between four strings in the form of ‘A is
to B as C is to D’ denoted byA : B :: C : D. Analogical equations are the follow-
ing problems: if three strings A, B and C are given, how to coin the fourth string?
Proportional analogies are seen at work to coin new words or new sentences. In
this work, we focus on a type of analogies called analogies of commutation1. We

1 One can distinguish between four types of analogies between string of symbols:
repetition (e.g., A : B :: C : D), reduplication (e.g., cat : caat :: dog : doog), mirror
(e.g., abc : wxyz :: cba : zyxw) and commutation (examples in the text).
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do not deal with semantic analogies like: queen : king :: woman : man. Rather,
the computational analogy directly works on the symbolic level. [7] gives an
algorithm to solve analogies of commutation on strings. [10] proposes a simi-
lar algorithm. Both algorithms base on the notion of edit distance. In [9], the
formalization was successfully applied in the development of an analogy-based
machine translation system. In this work we refer to these previous formaliza-
tions in designing an appropriate structure for a neural network.

Neural networks have been successfully applied to many tasks. Their main
advantage is their ability to learn from examples without predefined knowledge of
the problem. Assuming that an appropriate model structure is used, the network
can estimate the underlying structure of the problem. Although many neural
networks are proposed for different tasks, no specific neural network seems to
have ever been proposed to solve analogical equations on strings of symbols. [1, 3]
proposed networks to generate new images based on the previous image samples
for classification model training. However, these problems are not expressed in
the form of analogy equations. In [13], neural networks generate new images
by solving analogy equations between images. This is similar to our problem
of analogical equations on strings. The successful implementations point at the
possibility of developing neural network to solve analogical equations on strings.

3 Proposed Method

In Sect. 3.1, a method to transform input strings into matrices is introduced.
The matrices are re-sampled into fixed-size matrices in Sect. 3.2. Two filtering
methods are introduced in Sect. 3.3. The neural network is explained in Sect. 3.4.
The output matrices are decoded into a final string by the decoder in Sect. 3.5.

3.1 Alignment Matrices

The usual approach for processing strings of characters with neural networks
is vector encoding. Dictionary based one-hot-vectors are used in [4, 6, 15]. For
the analogy resolution task, vectors could be built at the character level. Un-
fortunately, this vector representation presents some problems. First, strings are
variable in length. Second, dictionary-based vectors are language-specific. These
limitations make the usage of one-hot-vector limited to fixed length and specific
language strings.

Proportional analogy can be processed by calculating similarities through
edit distances. Consequently, a representation for the similarity of strings seems
appropriate. Alignment matrices are widely adopted in the genetic sequence
alignment task [2]. They encode a pair of sequences into a matrix where each cell
represents a local matching point. Figure 1a (left) shows the alignment between
the strings ‘harder’ and ‘hard’. Local matching positions with the value of 1.0
are shown as black cells. Unmatched positions with a value of 0.0 are shown as
white cells.
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3.2 Matrix Re-sampling
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Fig. 1. a An example of alignment matrix. Original (Left) Re-sampled (Right). b Com-
parison between re-sampling methods. Original matrix (1), Proposed (2), Nearest
Neighbor (3), Bilinear (4) and Bicubic (5). c An example of filtering methods

The alignment matrices can vary in dimension depending on the lengths of
the input strings. To feed the alignment data to a neural network, the matrices
need to be re-sampled into fixed dimension matrices.a1b1 . . . amb1

...
. . .

a1bn ambn

⇒
AB11 . . . ABz1

...
. . .

AB1z ABzz

 (1)

ABxy =

dI(y+1,m)e∑
i=bI(y,m)c

dI(x+1,n)e∑
j=bI(x,n)c

(aibj × f(i, x, n)× f(j, y,m)) (2)

f(s, t, u) = min (I(s + 1, u), t + 1)−max (I(s, u), t + 1) , I(w, n) = w × z

n

Input strings A and B with lengths m and n are denoted as a1a2. . . am and
b1b2. . . bn respectively. The original alignment matrix (Fig. 1, left) with dimen-
sion m×n has been re-sampled into AB with dimension z×z (Fig. 1, right). The
formula is shown in (2). The matrix AB is using a non-uniform linear transfor-
mation on both axes. Figure 1b illustrates this. The difference with other image
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re-sampling methods is shown on Fig. 1c. Our method can generate sharp edges
while maintaining the diagonal line visible.

3.3 Filtering

Anomaly black cells appear because of duplicate characters. As they do not
belong to any valid alignment, these cells degrade the prediction quality. We
thus introduce two filtering methods to remediate this.

Mathematical Morphology Originally proposed in [14], mathematical morpho-
logy enhances an input image by specified filters and operations. Alignment noise
usually appears in positions out of the main diagonal. An example is the cell
on the right of Fig. 1a which matches the character ‘r’ in ‘hard’ with the last
character of ‘harder’. Two 3 × 3 filters are shown in Fig. 1b (2,top). The original
matrix is filtered by both filters for grey scale erosion. The two filtered matrices
are combined by their maximum values. Using this procedure, black cells ap-
pearing out of a diagonal line are filtered out, while diagonal lines keep sharp
ending. Figure 1b (2,bottom) shows this.

Diagonal Weight Usually, the valid alignments are located on the main pri-
mary diagonal line. So, we apply a linear weighting scheme along this diagonal
line. Cells which are further away from the line are gradually less weighted.
Figure 1b (4,top) shows the weighting filter. Equation (3) denotes the value at
(x, y) of the weight-filtered matrix AB. z is the size of the matrix. Figure 1b
(4,bottom) shows the result of this filtering method.

ABxy = axby ×
(

1− |x− y|
z

)
(3)

3.4 Neural Network Model

AB AC

BD

(a)

AB AC

BD CD

ĀB̄ ĀC̄

B̄D̄ C̄D̄

(b)

Fig. 2. Equivalent prediction flows

To design an appropriate neural network structure, we rely on the character-
istics of analogies. An important characteristic is the equivalent forms of analogy.
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abzzab12ab11 . . .

ABzzAB12AB11

aczzac12ac11 . . .

ACzzAC12AC11

h1qh12h11

. . .

hpqhp2hp1 . . .

...

bdzzbd2bd1
. . .

BDmmBD12BD11

Fig. 3. Neural network structure

As described in [8], a single form A : B :: C : D has 7 other equivalent forms:
A : C :: B : D, B : A :: D : C, B : D :: A : C, C : A :: D : B, C : D :: A : B,
D : B :: C : A, D : C :: B : A.

Another characteristic is the mirroring of strings. If A : B :: C : D is an
analogy, then Ā : B̄ :: C̄ : D̄ holds too, where Ā represents the mirror of A. The
mirror of string a1a2. . . am is amam−1. . . a1. As a result, we get eight additional
equivalent equations. Equivalent prediction flows are shown in Fig. 2. Four boxes
on corners represent the alignment matrix generated from the input strings (mir-
ror versions on the right). Matrix AB is the fixed-dimension alignment matrix
build against string A and B using the method explained in Sect. 3.1 to 3.3.
The two input matrices are flattened and concatenated to form the input vector.
The concatenations are represented as a circle connection. The merged data are
fed into the neural network. The dashed line is representing the neural network
structure with shared parameters for all equivalent prediction flows. The net-
work is trained on all equivalent data flows. Note that the direction of the input
alignment matrices needs to be in the correct orientation.

The neural network AB◦AC99KBD is detailed in Fig. 3. The network predicts
the matrix BD. The input data is the flattened and concatenated representation
of matrices AB and AC. The total number of input nodes is thus 2×z2. The
flow goes into p fully connected hidden layers, where each layer has q nodes. The
output layer has z2 nodes. Pairs of predicted output matrices from the network
are decoded into a final string by a decoder algorithm explained below.

3.5 Decoder

|D| = |B|+ |C| − |A| (4)

|D|a = |B|a + |C|a − |A|a , ∀a (5)

From the alignment matrices AB and AC, the neural network produces a
pair of matrices that stand for the alignment BD and CD. The decoder decodes
the pair of matrices into a final string which is a hypothesis for the solution D of
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Algorithm 1: Decoder

Input: BD,CD: two re-sampled matrices
Input: A,B,C: input strings
Input: z: length of output string
Data: N : set of number of occurrences for each character
Data: V [c, i]: set of likelihood values of character c at each i position
Output: D: output string

1 N,V,D ← [] // Initialize.

2 foreach c ∈ {C ∪B ∪A} do
3 N [c]← |B|c + |C|c − |A|c // Enforce property (5).

4 foreach c ∈ {A ∪B ∪ C} do
5 for j ← 1 to z do
6 V [c, j]←

∑
(BD[i, j], ∀B[i] = c) + // Compute likelihoods.

7
∑

(CD[i, j],∀C[i] = c)

8 foreach c ∈ {A ∪B ∪ C} do
9 for i← 1 to N [c] do

10 D[i]← argc max(V [c, i])

11 return D

the analogical equation between strings A : B :: C : D, In the decoder, we rely
on a set of properties of analogies. The first property is the relationship between
the lengths of the output string and the input strings. Equation (4) shows this
relationship. The length of D is entirely determined by the lengths of A, B and
C. Another piece of information is the number of occurrences of symbols in the
output string. In (5), |A|a stands for the number of occurrences of symbol a in
string A. (5) applied to all symbols implies (4). Our decoder is based on the
following three pieces of information: the two predicted alignment matrices, the
length of the output string, and the number of occurrences of each symbol.

4 Experiments

4.1 Dataset

We construct a data set of analogical equations on strings. The data set is a
combination of the subset of the test given in [11] that contains only formal
analogies (3370 analogies, e.g., bright : brightest :: sweet : sweetest) and formal
analogies in multiple languages (some extracted from the appendix of [7]). We
randomly selected 10% of the data as our test set, the rest is used for training.
The statistics of the data set are: # of training samples = 5214, # of test samples
= 579, average edit distance = 1.78, average length of string = 7.04, SD length
of string = 2.54. Some examples of analogical equations in the data set are:
(Japanese) 自由 :不自由な ::用意 :不用意な, (Chinese) 读 :读者 ::学 :学者.
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4.2 Experimental Procedure

We performed a series of experiments to evaluate the performance of each para-
meter (see subsection below). Another experiment determines the highest ac-
curacy rate. For each experiment, all parameters are constant except those pa-
rameters which are tested. The basic parameter settings are: size of alignment
matrices = 16×16, re-sampling method = proposed, filtering method = both,
number of hidden nodes = 128, number of hidden layers = 1, loss function =
MSE, activation = ReLU[12], optimizer = Adam[5], and number of epochs =
200. Any alteration to these basic parameters is clearly stated in the description
of each experiment.

# of hyper
parameters

Train time
(m:s)

Train loss
(MSE)

Test loss
(MSE)

Accuracy
(%)

Alignment
matrices

size

2 × 2 1,668 4:07 0.009 0.005 1.73
4 × 4 6,288 4:53 0.013 0.008 16.75
8 × 8 24,768 5:34 0.017 0.010 67.18

16 × 16 98,688 7:12 0.024 0.017 79.10
32 × 32 394,368 14:03 0.035 0.026 84.11

Re-sampling
methods

NN 98,688 6:56 0.039 0.031 67.88
Bilinear 98,688 7:10 0.015 0.010 72.71
Bicubic 98,688 6:40 0.019 0.012 78.24

Proposed 98,688 7:12 0.024 0.017 79.10

Filtering
methods

None 98,688 6:28 0.056 0.044 77.72
Morph 98,688 6:39 0.040 0.031 76.68
Weight 98,688 7:32 0.034 0.025 79.45
Both 98,688 7:12 0.024 0.017 80.48

Number of
hidden
nodes

128 98,688 7:12 0.024 0.017 80.83
256 197,120 8:21 0.022 0.015 82.38
512 393,984 9:51 0.021 0.017 83.07
1024 787,712 13:28 0.019 0.012 85.84

Number of
hidden
layers

1 98,688 7:12 0.024 0.017 80.66
2 115,200 9:55 0.023 0.015 84.44
3 131,712 11:22 0.023 0.014 86.36
4 148,224 11:54 0.023 0.014 87.56

Table 1. Experiment results

4.3 Evaluation

1. Training Time. A significant advantage of our design is its ability to learn
at a high speed. We ran experiments to test the influence of various hyper-
parameters. We measured the training times after 200 epochs.
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2. Loss. We measured the values of a loss function (or objective function).
These values reflect the ability of the neural network to predict the correct
alignment matrices by comparing the output with the reference ground truth.
The Mean Square Error (MSE) function is given in (6). P is the predicted
matrix from the neural network, and T is the ground truth matrix. Lower
values reflect a more precise prediction, hence better model configurations.

3. Accuracy. We measured the accuracy of our network by the percentage of
correct answers over the total number of test samples (see (7)). In any case
if one or more characters in the output string are different from the reference
string, the prediction is counted as a failure.

MSE =
1

z2

z∑
i=1

z∑
j=1

(Pij −Rij)
2

(6)

Accuracy =
# of correct answers

total # of test samples
× 100 (7)
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Fig. 4. Loss (left), accuracy against output length (right)

5 Experiment Results

Size of Alignment Matrices In this experiment, the size of alignment matrices
are varied from 4 to 32 by subsequent powers of 2. Experiment results in Fig. 4
show expected behaviors. The bigger the alignment matrices, the higher the
accuracy. The highest rate of 84.11% is obtained with 32×32 matrices. Figure 4
(right) shows that the size of alignment matrices directly contributes to their
ability to output longer solutions. The downside of bigger alignment matrices
is the number of network connections which causes an exponential explosion of
hyper-parameters. Table 1 shows that training times increase with the number
of hyper-parameters.

Matrix Re-sampling Methods We compared our re-sampling method with near-
est neighbor, bilinear and bicubic methods. Results show that our re-sampling
method achieves the highest accuracy.
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Filtering methods As we proposed two filtering methods, we test all combina-
tions: no filtering, only one, or both. This gives four combinations. The results in
Table 1 show that the use of both filtering methods yields the highest accuracy.
We observe that the use of mathematical morphology yields a lower accuracy
rate than without any filtering. This may indicate some limitation of the selected
morph filters.

Number of hidden nodes We set the number of hidden layers to one, but the
number of nodes varies. A higher number of hidden nodes reflects the ability to
recognize more complex patterns. Results show that networks with more hidden
nodes can yield higher accuracy rates at the expense of the training time.

Number of hidden layers Usually, deeper network structures are favored for
more complicated patterns. But a disadvantage is longer learning times. In this
experiment, each network has the same number of hidden nodes (128) per layer,
but with a different number of layers. As expected, a deeper structure give a
better recognition rate. Interestingly, with four hidden layers, the number of
hyper-parameters is a lot lower than one large single layer network as in the
last experiment. Yet, a deeper network can achieve a better accuracy rate in less
training time.

5 10 15
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100

Output length

A
cc

u
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cy

Fig. 5. Accuracy against output length

Table 2. Comparison to baseline

Training time
(m:s)

Accuracy
(%)

Baseline — 94.47
Proposed 35:54 95.68

Benchmark We select the most extreme configuration (alignment matrices =
32×32, number of hidden nodes = 1024, number of hidden layers = 2) to compare
the results with a baseline algorithm given in [7]. Table 2 shows that our proposed
neural network achieves a higher accuracy rate. This may come from the fact
that our dataset contains some samples which do not comply the formalization
of the baseline algorithm. Figure 5 shows some limitation in our network to solve
equations with longer strings. Nevertheless, this result proves the effectiveness
of our neural network model for the task.

6 Conclusion

In this work, a neural network design to solve analogical equations of commuta-
tion on strings of symbols has been proposed. We presented several methods to
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transform the input strings to matrix representation and back to output string.
Two filtering methods to reduce the alignment noise were introduced. The model
parameters were tested on a number of experiments. They show promising results
as an accuracy of more than 95% was achieved. The comparison to a baseline
system showed higher accuracy rate on the test set.

We intend to further improve our neural network in the future. From the re-
ported experiments, the accuracy degrades with the length of strings. Improve-
ments in the network structure may help to improve the prediction accuracy.
Also, the decoding algorithm impacts the accuracy of the final string. The de-
coding scheme can be further improved.
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